DOI QR코드

DOI QR Code

Plant Cell Wall Degradation with a Powerful Fusarium graminearum Enzymatic Arsenal

  • Published : 2009.06.30

Abstract

The complex enzyme pool secreted by the phytopathogenic fungus Fusarium graminearum in response to glucose or hop cell wall material as sole carbon sources was analyzed. The biochemical characterization of the enzymes present in the supernatant of fungal cultures in the glucose medium revealed only 5 different glycosyl hydrolase activities; by contrast, when analyzing cultures in the cell wall medium, 17 different activities were detected. This dramatic increase reflects the adaptation of the fungus by the synthesis of enzymes targeting all layers of the cell wall. When the enzymes secreted in the presence of plant cell wall were used to hydrolyze pretreated crude plant material, high levels of monosaccharides were measured with yields approaching 50% of total sugars released by an acid hydrolysis process. This report is the first biochemical characterization of numerous cellulases, hemicellulases, and pectinases secreted by F. graminearum and demonstrates the usefulness of the described protein cocktail for efficient enzymatic degradation of plant cell wall.

Keywords

References

  1. Agrios, G. N. 1997. Plant Pathology, 4th Ed. Academic Press, London
  2. Aro, N., T. Pakula, and M. Penttila. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29: 719-739 https://doi.org/10.1016/j.femsre.2004.11.006
  3. Belien, T., S. Van Campenhout, M. Van Acker, and G. Volckaert. 2005. Cloning and characterization of two endoxylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against endoxylanase inhibitors from wheat. Biochem. Biophys. Res. Commun. 327: 407-414 https://doi.org/10.1016/j.bbrc.2004.12.036
  4. Carapito, R., C. Carapito, J.-M. Jeltsch, and V. Phalip. 2009. Efficient hydrolysis of hemicellulose by a Fusarium graminearum xylanase blend produced at high levels in Escherichia coli. Bioresource Technol. 100: 845-850 https://doi.org/10.1016/j.biortech.2008.07.006
  5. Douaiher, M.-N., E. Nowak, V. Dumortier, R. Durand, P. Reignault, and P. Halama. 2007. Mycosphaerella graminicola produces a range of cell wall-degrading enzyme activities in vitro that vary with the carbon source. Eur. J. Plant Pathol. 117: 71-79 https://doi.org/10.1007/s10658-006-9073-9
  6. Durand, H., M. Clanet, and G. Tiraby. 1988 Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb. Technol. 10: 341-346 https://doi.org/10.1016/0141-0229(88)90012-9
  7. Federici, L., C. Caprari, B. Mattei, C. Savino, A. Di Matteo, G. De Lorenzo, F. Cervone, and D. Tsernoglou. 2001. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc. Natl. Acad. Sci. U.S.A. 98: 13425-13430 https://doi.org/10.1073/pnas.231473698
  8. Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10: 141-146 https://doi.org/10.1016/j.cbpa.2006.02.035
  9. Goubet, F., B. Morriswood, and P. Dupree. 2003. Analysis of methylated and unmethylated polygalacturonic acid structure by polysaccharide analysis using carbohydrate gel electrophoresis. Anal. Biochem. 321: 174-182 https://doi.org/10.1016/S0003-2697(03)00438-X
  10. Goubet, F., A. Ström, P. Dupree, and M. A. K. Williams. 2005. An investigation of pectin methylesterification patterns by two independent methods: Capillary electrophoresis and polysaccharide analysis using carbohydrate gel electrophoresis. Carbohydr. Res. 340: 1193-1199 https://doi.org/10.1016/j.carres.2005.01.037
  11. Goubet, F., A. Strom, B. Quemener, E. Stephens, M. A. K. Williams, and P. Dupree. 2006. Resolution of the structural isomers of partially methylesterified oligogalacturonides by polysaccharide analysis using carbohydrate gel electrophoresis. Glycobiology 16: 29-35 https://doi.org/10.1093/glycob/cwj022
  12. Guo, W., L. Gonzalez-Candelas, and P. E. Kolattukudy. 1995. Cloning of a novel constitutively expressed pectate lyase gene pelB from Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI) and characterization of the gene product expressed in Pichia pastoris. J. Bacteriol. 177: 7070-7077 https://doi.org/10.1128/jb.177.24.7070-7077.1995
  13. Hatsch, D., V. Phalip, E. Petkowski, and J.-M. Jeltsch. 2006. Fusarium graminearum on plant cell wall: No fewer than 30 xylanase genes transcribed. Biochem. Biophys. Res. Commun. 345: 959-966 https://doi.org/10.1016/j.bbrc.2006.04.171
  14. Hegedus, D. D. and S. R. Rimmer. 2005. Sclerotinia sclerotiorum:When 'to be or not to be' a pathogen? FEMS Microbiol. Lett. 251: 177-184 https://doi.org/10.1016/j.femsle.2005.07.040
  15. Hogg, D., G. Pell, P. Dupree, F. Goubet, S. M. Martin-Orue, S. Armand, and H. J. Gilbert. 2003. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem. J. 371: 1027-1043 https://doi.org/10.1042/BJ20021860
  16. Kim, T. H., F. Taylor, and K. B. Hicks. 2008. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresource Technol. 99: 5694-5702 https://doi.org/10.1016/j.biortech.2007.10.055
  17. Lynd, L. R., M. S. Laser, D. Bransby, B. E. Dale, B. Davison, R. Hamilton, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26: 169-172 https://doi.org/10.1038/nbt0208-169
  18. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  19. Misas-Villamil, J. C. and R. A. van der Hoorn. 2008. Enzymeinhibitor interactions at the plant-pathogen interface. Curr. Opin. Plant Biol. (in press: DOI: 10.1016/ j.pbi.2008.04.007)
  20. Mitchell, D. B., K. Weimann, B. J. Vogel, L. Pasamontes, and A. P. G. M. van Loon. 1997. The phytase subfamily of histidine acid phosphatases: Isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143: 245-252 https://doi.org/10.1099/00221287-143-1-245
  21. Nagy, T., D. Nurizzo, G. J. Davies, P. Biely, J. H. Lakey, D. N. Bolam, and J. H. Gilbert. 2003. The α-glucuronidase, GlcA67A, of Cellvibrio japonicus utilizes the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J. Biol. Chem. 278: 20286-20292 https://doi.org/10.1074/jbc.M302205200
  22. Palackal, N., C. S. Lyon, S. Zaidi, P. Luginbühl, P. Dupree, F. Goubet, et al. 2007. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl. Microbiol. Biotechnol. 74: 113-124 https://doi.org/10.1007/s00253-006-0645-6
  23. Pauly, M. and K. Keegstra. 2008. Physiology and metabolism 'Tear down this wall.' Curr. Opin. Plant Biol. 11: 233-235 https://doi.org/10.1016/j.pbi.2008.04.002
  24. Phalip, V., F. Delalande, C. Carapito, F. Goubet, D. Hatsch, E. Leize-Wagner, P. Dupree, A. VanDorsselaer, and J.-M. Jeltsch. 2005. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr. Genet. 48: 366-379 https://doi.org/10.1007/s00294-005-0040-3
  25. Ralet, M.-C., J. C. Cabrera, E. Bonnin, B. Quemener, P. Hellin, and J.-F. Thibault. 2005. Mapping sugar beet pectin acetylation pattern. Phytochemistry 66: 1832-1843 https://doi.org/10.1016/j.phytochem.2005.06.003
  26. Roncero, M. I. G., A. Di Pietro, M. C. Ruiz-Roldan, M. D. Huertas-Gonzalez, F. I. Garcia-Maceira, E. Meglecz, et al. 2000. Role of cell wall-degrading enzymes in pathogenicity of Fusarium oxysporum. Rev. Iberoamericana Micol. 17: S47-S53
  27. Sørensen, H. R., S. Pedersen, C. T. Jorgensen, and A. S. Meyer. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant 'minimal' enzyme cocktail containing ${\beta}$-xylosidase and novel endo-1,4-${\beta}$-xylanase and ${\alpha}$-L-arabinofuranosidase activities. Biotechnol. Progress 23: 100-107 https://doi.org/10.1021/bp0601701
  28. Sposato, P., J. H. Ahn, and J. D. Walton. 1995. Characterization and disruption of a gene in the maize pathogen Cochliobolus carbonum encoding a cellulase lacking a cellulose binding domain and hinge region. Mol. Plant Microbe Interact. 8: 602-609 https://doi.org/10.1094/MPMI-8-0602
  29. Sulzenbacher, G., M. Schulein, and G. J. Davies. 1997. Structure of the endoglucanase I from Fusarium oxysporum: Native, cellobiose, and 3,4-epoxybutyl ${\beta}$-D-cellobioside-inhibited forms, at 2.3 ${\AA}$ resolution. Biochemistry 36: 5902-5911 https://doi.org/10.1021/bi962963+
  30. Tabka, M. G., I. Herpoel-Gimbert, F. Monod, M. Asther, and J. C. Sigoillot. 2006. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb. Technol. 39: 897-902 https://doi.org/10.1016/j.enzmictec.2006.01.021
  31. Urban, M., S. Daniels, E. Mott, and K. Hammond-Kosack. 2002. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant J. 32: 961-973 https://doi.org/10.1046/j.1365-313X.2002.01480.x
  32. Weil, J., P. Westgate, K. Kohlmann, and M. R. Ladisch. 1994. Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb. Technol. 16: 1002-1004 https://doi.org/10.1016/0141-0229(94)90012-4

Cited by

  1. Activities of cell wall degrading enzymes in autolyzing cultures of threeFusarium culmorumisolates: growth-promoting, deleterious and pathogenic to rye (Secale cereale) vol.103, pp.5, 2009, https://doi.org/10.3852/10-300
  2. Purification and partial characterisation of pectin methylesterase produced by Fusarium asiaticum vol.115, pp.11, 2009, https://doi.org/10.1016/j.funbio.2011.07.005
  3. Characterization of the Four GH12 Endoxylanases from the Plant Pathogen Fusarium graminearum vol.22, pp.8, 2009, https://doi.org/10.4014/jmb.1112.11019
  4. Hydrolysis of fungal and plant cell walls by enzymatic complexes from cultures of Fusarium isolates with different aggressiveness to rye (Secale cereale) vol.194, pp.8, 2009, https://doi.org/10.1007/s00203-012-0803-4
  5. Genome‐wide transcriptional responses of Fusarium graminearum to plant cell wall substrates vol.340, pp.2, 2009, https://doi.org/10.1111/1574-6968.12079
  6. Characterization of major hydrolytic enzymes secreted by Pythium myriotylum, causative agent for soft rot disease vol.104, pp.5, 2009, https://doi.org/10.1007/s10482-013-9983-4
  7. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum vol.15, pp.None, 2015, https://doi.org/10.1186/s12870-014-0369-1
  8. Disclosure of the Molecular Mechanism of Wheat Leaf Spot Disease Caused by Bipolaris sorokiniana through Comparative Transcriptome and Metabolomics Analysis vol.20, pp.23, 2009, https://doi.org/10.3390/ijms20236090
  9. Building on a foundation: advances in epidemiology, resistance breeding, and forecasting research for reducing the impact of fusarium head blight in wheat and barley vol.43, pp.4, 2009, https://doi.org/10.1080/07060661.2020.1861102