DOI QR코드

DOI QR Code

Hydrogen Adsorption of PAN-based Porous Carbon Nanofibers using MgO as the Substrate

  • Jung, Min-Jung (Dept. of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Im, Ji-Sun (Dept. of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jeong, Eui-Gyung (Dept. of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jin, Hang-Kyo (Korea Research Institute of Chemical Technology) ;
  • Lee, Young-Seak (Dept. of Applied Chemistry and Biological Engineering, Chungnam National University)
  • Received : 2009.06.30
  • Accepted : 2009.08.13
  • Published : 2009.09.30

Abstract

In this study, porous electrospun carbon fibers were prepared by electrospinning with PAN and $MgCl_2$, as a MgO precursor. MgO was selected as a substrate because of its chemical and thermal stability, no reaction with carbon, and ease of removal after carbonization by dissolving out in acidic solutions. $MgCl_2$ was mixed with polyacrylonitrile (PAN) solution as a precursor of MgO with various weight ratios of $MgCl_2$/PAN. The average diameter of porous electrospun carbon fibers increased from 1.3 to 3 ${\mu}m$, as the $MgCl_2$ to PAN weight ratio increased. During the stabilization step, $MgCl_2$ was hydrolyzed to MgOHCl by heat treatment. At elevated temperature of 823 K for carbonization step, MgOHCl was decomposed to MgO. Specific surface area and pore structure of prepared electrospun carbon fibers were decided by weight ratio of $MgCl_2$/PAN. The amount of hydrogen storage increased with increase of specific surface area and micropore volume of prepared electrospun carbon fibers.

Keywords

References

  1. Derbyshire, F.; Jagtoyen, M.; Thwaiter, M. "Activated carbons - production and application, in porosity in carbons", ed. J. W. Patrick, Edward Arnold, 1995.
  2. Laszlo, K.; Bota, A.; Nagy, L. G. Carbon 2000, 38, 1965. https://doi.org/10.1016/S0008-6223(00)00038-5
  3. Im, J. S.; Park, S. J.; Kim, T. J.; Kim, Y. H.; Lee, Y. S. J. Colloid Interf. Sci. 2008, 318, 42. https://doi.org/10.1016/j.jcis.2007.10.024
  4. Illan-Gomez, M. J.; Garcia-Garcia, A.; Salinas-Martinez de Lecea, C.; Linares-Solano, A. Energy Fuels 1996, 10, 1108. https://doi.org/10.1021/ef950195+
  5. Lozano-Castello, D.; Lillo-Rodenas, M. A.; Cazorla-Amoros, D.; Linares-Solano, A. Carbon 2001, 39, 741. https://doi.org/10.1016/S0008-6223(00)00185-8
  6. Lillo-Rodenas, M. A.; Lozano-Castello, D.; Cazorla-Amoros, D.; Linares-Solano, A. Carbon 2001, 39, 751. https://doi.org/10.1016/S0008-6223(00)00186-X
  7. Raymundo-Pinero, E.; Cazorla-Amoros, D.; Linares-Solano, A.; Delpeux, S.; Frackowiak, E.; Szostak, K.; Beguin, F. Carbon 2002, 40, 1614. https://doi.org/10.1016/S0008-6223(02)00134-3
  8. Macia-Agullo, J. A.; Moore, B. C.; Cazorla-Amoros, D.; Linares-Solano, A. Carbon 2004, 42, 1367. https://doi.org/10.1016/j.carbon.2004.01.013
  9. Kyotani, T. "Porous carbons", ed. E. Yasuda, M. Inagaki, K. Kaneko, M. Endo, A. Oya, Y. Tanabe, Carbon alloys, Amsterdam: Elsevier, 2003, 109.
  10. Shi, Z. G.; Feng, Y. Q.; Xu, L; Da, S. L. Carbon 2003, 41, 2668. https://doi.org/10.1016/S0008-6223(03)00337-3
  11. Fuertes, A. B.; Pico, F.; Rojo, J. M. J. Mater. Sci. 2002, 137, 907.
  12. Inagaki, M.; Miura, H.; Konno, H. J. Eur. Ceram. Soc. 1998, 18, 1011. https://doi.org/10.1016/S0955-2219(97)00176-3
  13. Inagaki, M.; Kobayashi, S.; Kojin, F.; Tanaka, N.; Morishita, T.; Tryba, B. Carbon 2004, 42, 3153. https://doi.org/10.1016/j.carbon.2004.07.029
  14. Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M. Carbon 2006, 44, 2360. https://doi.org/10.1016/j.carbon.2006.04.030
  15. Shand, M. A. "The Chemistry and Technology of Magnesia", John Wiley & Sons, New York, 2006, 59.
  16. Kipourosa G. J.; Sadoway D. R. J. Light Metals 2001, 1, 111. https://doi.org/10.1016/S1471-5317(01)00004-9
  17. Kipouros, J.; Sadoway, D. R. "The chemistry and electrochemistry of magnesium production", vol. 6, ed G. Mamantov, C. B. Mamantov, J. Braunstein, Advances in Molten Salt Chemistry, Elsevier, Amsterdam, 1987, 127.
  18. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603
  19. Im, J. S.; Park, S. J.; Lee, Y. S. J. Colloid Interf. Sci. 2007, 314, 32. https://doi.org/10.1016/j.jcis.2007.05.033
  20. Jin, H. K.; Lee, Y. S.; Hong, I. P. Catalysis Today 2007, 120, 399. https://doi.org/10.1016/j.cattod.2006.09.012

Cited by

  1. Morphology and pore control in carbon materials via templating vol.1, pp.9, 2011, https://doi.org/10.1039/c1ra00608h
  2. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials vol.13, pp.2, 2012, https://doi.org/10.5714/CL.2012.13.2.073
  3. Ionothermal template transformations for preparation of tubular porous nitrogen doped carbons vol.4, pp.3, 2017, https://doi.org/10.1039/C6MH00592F
  4. for Lithium-Ion Batteries with Enhanced Capacity vol.304, pp.3, 2019, https://doi.org/10.1002/mame.201800564