DOI QR코드

DOI QR Code

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam

합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향

  • Shin, Young-Ho (Dept. of Water Resources Investigation and Planning, K-water) ;
  • Julien, Pierre Y. (Dept. of Civil and Environmental Engrg., Colorado State Univ.)
  • 신영호 (한국수자원공사 조사기획처) ;
  • Published : 2009.07.31

Abstract

Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

황강은 1989년 합천 본댐 및 조정지댐의 건설후 하도폭, 하상재료, 식생 및 하천구간내 사주의 형성 등 많은 하천 지형학적 변화가 있었다. 이러한 변화는 댐 건설후 흐름 및 유사이송의 변화에 기인한다. 합천댐은 약 591천 $m^3$/년의 유사를 차단한 것으로 파악되었다. 조정지댐 준공후 연최대피크 방류량은 654.7 $m^3$/s에서 126.3 $m^3$/s로 감소되었다 (댐건설전의 19.3%). 합천조정지댐 하류로부터 낙동강 합류점까지 45 km 구간의 1982, 1993 및 2004년의 항공사진을 분석한 결과 비식생하도폭(non-vegetated active channel width)은 평균 152m 감소되었다 (1982년의 약 47%). 비식생하도의 면적 역시 평균 6.6$km^2$ (1982년의 44%)가 감소하였다. 평균 중앙입경(D50)의 크기는 1983년 및 2003년에 1.07mm에서 5.72 mm로 평균 하상구배는 0.000943에서 0.000847로 각각 변하였다. 하상 세굴깊이는 조정지댐으로 부터 하류 20 km 구간에서 평균 약 2.6 m였다. 1차원 유사모형인 GSTAR-1D를 이용하여 장기하상변동을 예측하였는데 최심하상고는 2013-2015년 사이에 안정된 상태에 도달하는 것으로 나타났다. 합천 조정지댐에 의해 홍수기에 발생되는 흐름파가 하류 하천 지형변화에 미치는 영향을 파악하기 위해 해석적인 방법을 개발하고 유사모의모형으로 예측한 값과 비교 검토한 결과, 일주기파(daily pulse)와 홍수피크(flood peak)는 각각의 평균값이 흐를 때와 비교하여 하천지형변화에 훨씬 큰 영향을 미치는 것으로 나타났는데 이는 각각의 평균일 경우 보다 21%와 15%의 유사이송량의 증가를 보여주었다.

Keywords

References

  1. 한국수자원공사 (2002). 합천다목적댐 저수지 퇴사량조사 보고서
  2. 건설교통부 (2003). 황강하천정비기본계획 보고서
  3. 건설부 (1993). 황강하천정비기본계획 보고서
  4. 건설부 (1983). 황강하천정비기본계획 보고서
  5. Ackers, P. and White, W.R. (1973). 'Sediment transport: New approach and analysis.' Hydraulics Division, ASCE, Vol, 99, No. HY11, Proceeding paper 10167, pp. 2041-2060
  6. Chang, H.C. (1998). 'Fluvial-12 mathematical model for erodible channels, Users Manual.'
  7. Choi, S.U., Yoon, B., Woo, H., and Cho, K. (2004a). Effect of flow regime changes due to damming on the river morphology and vegetation cover in the downstream river reach: a case of Hapcheon Dam on the Hwang River. Korea Water Resources Association, Vol. 37, No. 1, pp. 55-66. (in Korean) https://doi.org/10.3741/JKWRA.2004.37.1.055
  8. Choi, S.U., Yoon, B., and Woo, H. (2004b). 'Effect of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea.' River Research and Application, Vol. 21, pp. 315-325 https://doi.org/10.1002/rra.849
  9. Downs, P.W. and Gregory, K.J. (2004). 'River Channel management: Towards Sustainable Catchment Hydrosystems.' Oxford University Press Inc., p. 395
  10. Engelund, F. and Hansen, E. (1972). 'A monograph on sediment transport in alluvial streams.' Teknisk Forlag, Copenhagen
  11. FAO/UNDP and KOWACO (1971). 'Pre-investment Survey of the Nakdong River Basin, Korea: Volume 4-Sediment Transportation in Rivers of the Nakdong Basin.' Daejeon, Korea
  12. Huang, J.V. and Greimann, B.P. (2006a). 'DRAFT User's Manual for GSTAR-1D 1.1.4, Generalized Sediment Transport for Alluvial Rivers-One Dimension, Version 1.1.4.' US Department of Interior, Bureau of Reclamation, Technical Service Center, Sedimentation and River Hydraulics Group
  13. Page, K., Read, A., Frazier, P., and Mount, N. (2005). 'The effect of altered flow regime on the frequency and duration of bankfull discharge: Murrumbidgee river, Australia.' River Research and Applications, Vol. 21, pp. 567-578 https://doi.org/10.1002/rra.828
  14. Petts, G.E. and Gurnell, A.M. 2005. 'Dams and geomorphology: Research progress and future directions.' Gemorphology, Vol. 71, pp.27-47 https://doi.org/10.1016/j.geomorph.2004.02.015
  15. Schumm, S.A. 1969. 'River metamorphosis.' Journal of the Hydraulics Division, ASCE, HYI: 255-63
  16. Shin, Y.H. (2007). 'Channel changes downstream of the Hapcheon Re-regulation Dam in South Korea.' Ph.D. Dissertation, Colorado State University, Fort Collins, CO
  17. U.S. Army Corps of Engineers. (1993). 'The Hydraulic Engineering Center, HEC-6 Scour and Deposition in Rivers and Reservoirs, User's Manual.' Mar. 1977 (revised 1993)
  18. USBR. (2006). 'DRAFT User's Manualfor GSTAR-1D 1.1.3.' US Department of Interior Bureau of Reclamation Technical Service Center Sedimentation and River Hydraulic Group
  19. Van Rijn, L. C. (1984). 'Sediment transport, Part I: Bed load transport.' Hydraulic Engineering ASCE, Vol. 110, No. 10, pp. 1431-1456 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
  20. Williams, G.P. and Wolman, M.G. (1984). 'Downstream effects of dams on alluvial rivers.' US Geological Survey, Professional Paper, 1286, Washington DC
  21. Woo, H., Choi, S.U., Yoon, B. (2004). 'Downstream effect of dam on river morphology and sandbar vegetation.' Proceedings of the Symposium of the 72nd Annual ICOLD meeting, Seoul, Korea
  22. Wu, W. and Vieira, D.A. (2002). 'One-Dimensional Channel Network Model CCHE1D Version 3.0 –Technical Manual.' Technical Report No. NCCHE-TR-2002-1, National Center for Computational Hydroscience and Engineering, The University of Mississippi
  23. Xu, J. 1990. 'An experimental study of complex response in river channel adjustment downstream from a reservoir.' Earth Surface Processesand Landforms 15: pp. 53–53 https://doi.org/10.1002/esp.3290150105
  24. Yang, C.T. (1973). 'Incipient motion and Sediment transport.' Hydraulics Division, ASCE, vol. 99, no. HY10, Proceeding Paper 10067, pp. 1679-1704
  25. Yang, C.T. (1979). 'Unit stream power equation for gravel.' Hydraulics Division, vol. 40, pp. 123-138
  26. Yang, C.T. and Simoes, F.J.M. (2002). 'User's manual for GSTAR3 (Generalized Stream Tube model for Alluvial River Simulation version 3.0).' USBR, Technical Service Center, Denver, Colorado

Cited by

  1. An Analysis of Bed Change Characteristics by Bed Protection Work vol.35, pp.4, 2015, https://doi.org/10.12652/Ksce.2015.35.4.0821