DOI QR코드

DOI QR Code

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • 발행 : 2009.07.31

초록

For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

키워드

참고문헌

  1. Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic press, New York, 1966
  2. S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math. 101 (1990), 697–703 https://doi.org/10.1007/BF01231521
  3. S. Haran, Analytic potential theory over the p-adics, Ann. Inst. Fourier(Grenoble) 43 (1993), no. 4, 905–944
  4. J. Marcinkiewicz, Sur l'interpolation d'op´erateurs, C. R. Acad. Sci. Paris 208 (1939), 1272–1273
  5. M. A. Naimark, Normed Rings, Moscow, Nauka, 1968
  6. E. M. Stein, Harmonic Analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, 1993
  7. V. S. Vladimirov and I. V. Volovich, p-adic quantum mechanics, Commun. Math. Phys. 123 (1989), 659–676 https://doi.org/10.1007/BF01218590
  8. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and Mathematical Physics, Series on Soviet & East European Mathematics, Vol. I, World Scientific, Singapore, 1992

피인용 문헌

  1. Carleson measures and the BMO space on thep-adic vector space vol.282, pp.9, 2009, https://doi.org/10.1002/mana.200610806