Production Condition and Characterization of Extracellular Protease from Micrococcus sp. HJ-19

Micrococcus sp. HJ19에서 체외분비 단백질 분해효소의 생산조건과 효소특성

  • Cha, In-Tae (Department of Microbiology, Chungbuk National University) ;
  • Oh, Yong-Sik (Department of Microbiology, Chungbuk National University) ;
  • Cho, Woon-Dong (Department of Microbiology, Chungbuk National University) ;
  • Lim, Chae-Sung (Department of Microbiology, Chungbuk National University) ;
  • Lee, Je-Kwan (Department of Microbiology, Chungbuk National University) ;
  • Lee, Oh-Seuk (Department of Food Fermentation Technology, Young-Dong University) ;
  • Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
  • 차인태 (충북대학교 자연과학대학 미생물학과) ;
  • 오용식 (충북대학교 자연과학대학 미생물학과) ;
  • 조운동 (충북대학교 자연과학대학 미생물학과) ;
  • 임채성 (충북대학교 자연과학대학 미생물학과) ;
  • 이제관 (충북대학교 자연과학대학 미생물학과) ;
  • 이오석 (영동대학교 와인발효식품학과) ;
  • 노동현 (충북대학교 자연과학대학 미생물학과)
  • Published : 2009.03.31

Abstract

Proteases are degradative enzymes which hydrolyze a peptide bond between amino acids and they are abundantly applied to commercial field. In order to investigate optimal medium compositions of carbon and nitrogen source for enzyme production, modified STY medium containing 0.15% yeast extract were used as basal medium. When galactose was used as carbon source, enzyme activity showed 1.3 higher than that of glucose. For nitrogen source addition of casamino acids to basal medium in place of tryptone showed lowest activity, whereas addition of malt extract showed maximal activity. The optimum temperature and pH of extracellular protease were found to be $35^{\circ}C$ an pH 8.5.

단백질 분해효소는 아미노산 간에 존재하는 공유결합인 펩티드 결합을 절단하는 효소이며, 세계적으로 가장 많이 판매되는 효소이다. 해양 심층수로부터 분리된 Micrococcus sp. HJ19의 체외분비 단백질 분해효소를 생산하는 최적의 배지조건을 조사하기 위하여 기본배지로 변형 STY 배지(1% tryptone, 0.15% yeast extract, 0.01% NaCl, 여과살균한 바닷물)를 사용하였다. 탄소원으로 포도당보다 갈락토오스를 사용하였을 때 1.3배로 높은 활성을 보여주었으며, 질소원으로는 casamino acid를 사용하였을 때 가장 낮은 활성을 보여준 반면, 맥아추출물을 사용하였을 때 가장 높은 활성을 나타내었다. 생산된 체외단백질 분해효소는 $35^{\circ}C$에서 최적의 활성을 나타내었으며, 최적 pH는 8.5로 판명되었다.

Keywords

References

  1. 옥민, 김민석, 서원석, 차재영, 조영수. 2000. 토양으로부터 분리한 Bacillus sp. WRD-1이 생산하는 extracellular protease의 특성. 한국산업미생물학회지 28, 329-333
  2. 차인태, 오용식, 노동현. 2007. 단배질 분해효소를 분비하는 Micrococcus sp. HJ19의 분리 및 특성. 한국미생물학회지 43, 222-226
  3. 차인태, 임형준, 노동현. 2007. 동해 심층수로부터 Pseudoaltermonas sp. HJ47의 분리 및 체외단백질분해효소 특성. 한국생명과학회지 17, 272-278 https://doi.org/10.5352/JLS.2007.17.2.272
  4. Alkhalaf, W., L. Vassal, M.J. Desmazeaud, J.C. Gripon, E. Perrot, G. Pitel, and J. Uro. 1987. Use of Rulactine as ripening agent in semi-hard cheese. Lait 67, 173-185 https://doi.org/10.1051/lait:1987211
  5. Cowan, D. 1983. Industrial applications: Proteins, pp. 353-374, In T. Godfrey and S. West (eds.), Industrial enzymology-The application of enzymes in industry. The Nature Press, New York, USA
  6. Denkin, S.M. and D.R. Nelson. 1999. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl. Environ. Microbiol. 65, 3555-3560
  7. Fernsndez, J., A. F. Mohedano, M.J. Polanco, M. Medina, and M. Nunez 2008. Purification and characterization of an extrcellular cysteine proteinase produced by Micrococcus sp. INIA 528. J. Appl. Microbiol. 81, 27-34 https://doi.org/10.1111/j.1365-2672.1996.tb03278.x
  8. Fukushima, J., S. Yamamoto, K. Morihara, Y. Atsumi, H. Takeuchi, S. Kawamoto, and K. Okuda. 1989. Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase. J. Bacteriol. 171, 1698-1704 https://doi.org/10.1128/jb.171.3.1698-1704.1989
  9. Godfrey, T. and S. West. 1996. Industrial enzymology, 2nd ed. Macmillan Publisher Inc., New York, USA
  10. Henderson, G., P. Krygsman, C.J. Liu, C.C. Davey, and L.T. Malek. 1987. Characterization and structure of genes for proteases A and B from Streptomyces griseus. J. Bacteriol. 169, 3778-3784 https://doi.org/10.1128/jb.169.8.3778-3784.1987
  11. Himelbloom, B.H. and H.M. Hassen. 1986. Effect of cysteine on growth, protease production, and catalase activity of Pseudomonase fluorescens. Appl. Environ. Microbiol. 51, 418-421
  12. Hinrichsen, L.L., M.C. Montel, and R. Talon. 1994. Proteolytic and lipolytic activities of Micrococcus roseus (65), Halomonas elongata (16) and Vibrio sp. (168) isolated from danish bacon curing brines. Int. J. Food Microbiol. 22, 115-126 https://doi.org/10.1016/0168-1605(94)90136-8
  13. Kothary, M.H. and A.S. Kreger. 1985. Production and partial characterization of an elastolytic protease of Vibrio vulnificus. Infect. Immun. 50, 534-540
  14. Kwon, Y.T., H.H. Lee, and H.M. Rho. 1993. Cloning, expression and sequencing of the minor protease encoding gene from Serratia marcescens ATCC 21074. Gene 125, 75-80 https://doi.org/10.1016/0378-1119(93)90748-R
  15. Lee, S.O., J. Kato, N. Takiguchi, A. Kuroda, T. Ikeda, A. Mitsutani, and H. Ohtake. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66, 4334-4339 https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  16. Mohedano, A.F., J. Fernndez, P. Gaya, M. Medina, and M. Nunez. 1997. Effect of pH, temperature and culture medium composition on the production of an extracellular cysteine proteinase by Micrococcus sp. INIA 528. J. Appl. Microbiol. 82, 81-86 https://doi.org/10.1111/j.1365-2672.1997.tb03300.x
  17. Piard, J.C., M. EL Soda, W. Alkhalaf, M. Rousseau, M. Desmazeaud, L. Vassal, and J.C. Gripon. 1986. Acceleration of cheese ripening with liposome-entrapped proteinase. Biotechem. Lett. 8, 241-246 https://doi.org/10.1007/BF01030505
  18. Prasad, R., R.K. Malik, and D.K. Mathur. 1986. Purification and characterization of an extrcellular caseinolytic enzyme of Micrococcus sp. MCC-315 isolated from cheddar cheese. J. Dairy Sci. 69, 633-642 https://doi.org/10.3168/jds.S0022-0302(86)80450-7
  19. Rao, M.B., A.M. Tanksale, M.S. Ghatge, and V.V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635
  20. Rattray, F.P., W. Bockelmann, and P.F. Fox. 1995. Purification and characterization of an extrcellular proteinase from Brevibacterium linens ATCC 9174. Appl. Environ. Microbiol. 61, 3454-3456
  21. Secades, P. and J.A. Guijarro. 1999. Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl. Environ. Microbiol. 65, 3969-3975
  22. Windle, H.J. and D. Kelleher. 1997. Identification and characterization of a metalloprotease activity from Helicobacter pylori. Infect. Immun. 65, 3132-3137