DOI QR코드

DOI QR Code

Crack identification in short shafts using wavelet-based element and neural networks

  • Xiang, Jiawei (School of Mechantronic Engineering, Guilin University of Electronic Technology, State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University)) ;
  • Chen, Xuefeng (State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University)) ;
  • Yang, Lianfa (School of Mechantronic Engineering, Guilin University of Electronic Technology)
  • Received : 2007.09.27
  • Accepted : 2009.09.24
  • Published : 2009.11.30

Abstract

The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval (BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by non-dimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model of rotor system is constructed to solve the first three natural frequencies functions of normalized crack location and depth. The normalized crack location, normalized crack depth and the first three natural frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis. Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.

Keywords

References

  1. Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J. (1978), 'A vibration technique for non-destructively assessing the integrity of structures', J. Mech. Eng. Sci., 20(2), 93-100 https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
  2. Canuto, C., Tabacco, A. and Urban, K. (1999), 'The wavelet element method part I: Construction and analysis', Appl. Comput. Harmon. A., 6, 1-52 https://doi.org/10.1006/acha.1997.0242
  3. Canuto, C., Tabacco, A. and Urban, K. (2000), 'The wavelet element method part II: Realization and additional feature in 2D and 3D', Appl. Comput. Harmon. A., 8, 123-165 https://doi.org/10.1006/acha.2000.0282
  4. Cho, H.N., Choi, Y.M., Lee, S.C. and Hur C.K. (2004), 'Damage assessment of cable stayed bridge using probabilistic neural networks', Struct. Eng. Mech., 17(3-4), 483-492 https://doi.org/10.12989/sem.2004.17.3_4.483
  5. Chui, C.K. and Quak, E. (1992), 'Wavelets on a bounded interval', Numer. Method. Approx. Theory, 1, 53-57
  6. Dimarogonas, A.D. (1996), 'Vibration of cracked structures: a state of the art review', Eng. Fract. Mech., 55(5), 831-857 https://doi.org/10.1016/0013-7944(94)00175-8
  7. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), 'A summary review of vibration-based damage identification', Shock Vib., 30(2), 91-105 https://doi.org/10.1177/058310249803000201
  8. Goswami, J.C., Chan, A.K. and Chui, C.K. (1995), 'On solving first-kind integral equations using wavelets on a bounded interval', IEEE T. Antenn. Propag., 43, 614-622 https://doi.org/10.1109/8.387178
  9. Gounaris, G. and Dimarogonas, A.D. (1988), 'A finite element of a cracked prismatic beam for structural analysis', Comput. Struct., 28, 309-313 https://doi.org/10.1016/0045-7949(88)90070-3
  10. Green, I. and Casey, C. (2005), 'Crack detection in a rotor dynamic system by vibration monitoring-Part I: Analysis', J. Eng. Gas Trub. Power, ASME, 127, 425-436 https://doi.org/10.1115/1.1789514
  11. Han, J.G., Ren, W.X. and Huang, Y. (2006), 'A spline wavelet finite element method in structural mechanics', Int. J. Numer. Meth. Eng., 66, 166-190 https://doi.org/10.1002/nme.1551
  12. Kisa, M., Brandon, J. and Topcu, M. (1998), 'Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods', Comput. Struct., 67, 215-223 https://doi.org/10.1016/S0045-7949(98)00056-X
  13. Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), 'Neural networks-based damage detection for bridges considering errors in baseline finite element models', J. Sound Vib., 280, 555-578 https://doi.org/10.1016/j.jsv.2004.01.003
  14. Lee, Y.S. and Chung, M.T. (2000), 'A study on crack detection using eignfrequency test data', Comput. Struct., 77, 327-342 https://doi.org/10.1016/S0045-7949(99)00194-7
  15. Lele, S.P. and Maiti, S.K. (2002), 'Modeling of transverse vibration of short beams for crack detection and measurement of crack extension', J. Sound Vib., 257(3), 559-583 https://doi.org/10.1006/jsvi.2002.5059
  16. Liu, S.W., Huang, J.H., Sung, J.C. and Lee, C.C. (2002), 'Detection of cracks using neural networks and computational mechanics', Comput. Meth. Appl. Mech. Eng., 191, 2831-2845 https://doi.org/10.1016/S0045-7825(02)00221-9
  17. Montalvao, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006), 'A review of vibration-based structural health monitoring with special emphasis on composite materials', Shock Vib., 38(4), 1-30
  18. Murigendrappa, S.M., Maiti, S.K. and Srirangarajian, M.R. (2005), 'Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies', Struct. Eng. Mech., 21(6), 635-658 https://doi.org/10.12989/sem.2005.21.6.635
  19. Nandwana, B.P. and Maiti, S.K. (1997), 'Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies'. J. Sound Vib. , 203(3), 435-446 https://doi.org/10.1006/jsvi.1996.0856
  20. Nelson, H.D. (1980), 'The dynamics of rotor-bearing systems using finite element', J. Mech. Des., ASME, 102, 793-803
  21. Owolabi, G.M., Swamidas, A.S.J. and Seshadri, R. (2003), 'Crack detection in beams using changes in frequencies and amplitudes of frequency response functions', J. Sound Vib., 265, 1-22 https://doi.org/10.1016/S0022-460X(02)01264-6
  22. Papadopoulos, C.A. and Dimarogonas, A.D. (1987), 'Coupled longitudinal and bending vibrations of a rotating shaft with an open crack', J. Sound Vib., 117(1), 81-93 https://doi.org/10.1016/0022-460X(87)90437-8
  23. Qu, W.L., Chen, W. and Xiao, Y.Q. (2003), 'A two-step approach for joint damage diagnosis of framed structures using artificial neural networks', Struct. Eng. Mech., 16(5), 581-595 https://doi.org/10.1296/SEM2003.16.05.04
  24. Sekhar, A.S. and Srinivas, B.N. (2002), 'Vibration characteristics of slotted shafts', J. Sound Vib., 251(4), 621-630 https://doi.org/10.1006/jsvi.2001.3643
  25. Sinou, J.J. (2007), 'A robust identification of single crack location and size only based on pulsations of the cracked system', Struct. Eng. Mech., 25(6), 691-716 https://doi.org/10.12989/sem.2007.25.6.691
  26. Tada, H., Paris, P.C. and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook (3rd edition). New York, ASME Press
  27. Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2006a), 'The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval', Finite Elem. Anal. Des., 42, 1269-1280 https://doi.org/10.1016/j.finel.2006.06.006
  28. Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2007a), 'Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval', Struct. Eng. Mech., 25(5), 613-629 https://doi.org/10.12989/sem.2007.25.5.613
  29. Xiang, J.W., Chen, X.F., He, Z.J. and Dong, H.B. (2007b), 'The construction of 1D wavelet finite elements for structural analysis', Comput. Mech., 40(2), 325-339 https://doi.org/10.1007/s00466-006-0102-5
  30. Xiang, J.W., Chen, X.F., He, Z.J. and Zhang, Y.H. (2007c), 'A new wavelet-based thin plate element using Bspline wavelet on the interval', Comput. Mech., 41(2), 243-255 https://doi.org/10.1007/s00466-007-0182-x
  31. Xiang, J.W., Chen, X.F., Li, B., He, Y.M. and He, Z.J. (2006), 'Identification of crack in a beam based on finite element method of B-spline wavelet on the interval', J. Sound Vib., 296(4-5), 1046-1052 https://doi.org/10.1016/j.jsv.2006.02.019
  32. Xiang, J.W., Chen, X.F., Mo, Q.Y. and He, Z.J. (2007), 'Identification of crack in a rotor system based on wavelet finite element method', Finite Elem. Anal. Des., 43(14), 1068-1081 https://doi.org/10.1016/j.finel.2007.07.001
  33. Yuan, S.F., Wang, L. and Peng, G. (2005), 'Neural networks method based on a new damage signature for structural health monitoring', Thin Wall. Struct., 43, 553-563 https://doi.org/10.1016/j.tws.2004.10.003
  34. Zachiarias, J., Hartmann, C. and Delgado, A. (2004), 'Damage detection on crates of beverages by artificial neural networks trained with finite-element data', Comput. Meth. Appl. Mech. Eng., 193, 561-574 https://doi.org/10.1016/j.cma.2003.10.009

Cited by

  1. Crack detection in beam-like structures using a wavelet-based neural network vol.226, pp.10, 2012, https://doi.org/10.1177/0954410011421709
  2. Time domain identification of multiple cracks in a beam vol.35, pp.6, 2010, https://doi.org/10.12989/sem.2010.35.6.773
  3. The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems vol.50, pp.5, 2014, https://doi.org/10.12989/sem.2014.50.5.679
  4. Damage detection of shear buildings using frequency-change-ratio and model updating algorithm vol.23, pp.2, 2019, https://doi.org/10.12989/sss.2019.23.2.107
  5. Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2009, https://doi.org/10.12989/sem.2020.73.4.455