References
- Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J. (1978), 'A vibration technique for non-destructively assessing the integrity of structures', J. Mech. Eng. Sci., 20(2), 93-100 https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
- Canuto, C., Tabacco, A. and Urban, K. (1999), 'The wavelet element method part I: Construction and analysis', Appl. Comput. Harmon. A., 6, 1-52 https://doi.org/10.1006/acha.1997.0242
- Canuto, C., Tabacco, A. and Urban, K. (2000), 'The wavelet element method part II: Realization and additional feature in 2D and 3D', Appl. Comput. Harmon. A., 8, 123-165 https://doi.org/10.1006/acha.2000.0282
- Cho, H.N., Choi, Y.M., Lee, S.C. and Hur C.K. (2004), 'Damage assessment of cable stayed bridge using probabilistic neural networks', Struct. Eng. Mech., 17(3-4), 483-492 https://doi.org/10.12989/sem.2004.17.3_4.483
- Chui, C.K. and Quak, E. (1992), 'Wavelets on a bounded interval', Numer. Method. Approx. Theory, 1, 53-57
- Dimarogonas, A.D. (1996), 'Vibration of cracked structures: a state of the art review', Eng. Fract. Mech., 55(5), 831-857 https://doi.org/10.1016/0013-7944(94)00175-8
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), 'A summary review of vibration-based damage identification', Shock Vib., 30(2), 91-105 https://doi.org/10.1177/058310249803000201
- Goswami, J.C., Chan, A.K. and Chui, C.K. (1995), 'On solving first-kind integral equations using wavelets on a bounded interval', IEEE T. Antenn. Propag., 43, 614-622 https://doi.org/10.1109/8.387178
- Gounaris, G. and Dimarogonas, A.D. (1988), 'A finite element of a cracked prismatic beam for structural analysis', Comput. Struct., 28, 309-313 https://doi.org/10.1016/0045-7949(88)90070-3
- Green, I. and Casey, C. (2005), 'Crack detection in a rotor dynamic system by vibration monitoring-Part I: Analysis', J. Eng. Gas Trub. Power, ASME, 127, 425-436 https://doi.org/10.1115/1.1789514
- Han, J.G., Ren, W.X. and Huang, Y. (2006), 'A spline wavelet finite element method in structural mechanics', Int. J. Numer. Meth. Eng., 66, 166-190 https://doi.org/10.1002/nme.1551
- Kisa, M., Brandon, J. and Topcu, M. (1998), 'Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods', Comput. Struct., 67, 215-223 https://doi.org/10.1016/S0045-7949(98)00056-X
- Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), 'Neural networks-based damage detection for bridges considering errors in baseline finite element models', J. Sound Vib., 280, 555-578 https://doi.org/10.1016/j.jsv.2004.01.003
- Lee, Y.S. and Chung, M.T. (2000), 'A study on crack detection using eignfrequency test data', Comput. Struct., 77, 327-342 https://doi.org/10.1016/S0045-7949(99)00194-7
- Lele, S.P. and Maiti, S.K. (2002), 'Modeling of transverse vibration of short beams for crack detection and measurement of crack extension', J. Sound Vib., 257(3), 559-583 https://doi.org/10.1006/jsvi.2002.5059
- Liu, S.W., Huang, J.H., Sung, J.C. and Lee, C.C. (2002), 'Detection of cracks using neural networks and computational mechanics', Comput. Meth. Appl. Mech. Eng., 191, 2831-2845 https://doi.org/10.1016/S0045-7825(02)00221-9
- Montalvao, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006), 'A review of vibration-based structural health monitoring with special emphasis on composite materials', Shock Vib., 38(4), 1-30
- Murigendrappa, S.M., Maiti, S.K. and Srirangarajian, M.R. (2005), 'Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies', Struct. Eng. Mech., 21(6), 635-658 https://doi.org/10.12989/sem.2005.21.6.635
- Nandwana, B.P. and Maiti, S.K. (1997), 'Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies'. J. Sound Vib. , 203(3), 435-446 https://doi.org/10.1006/jsvi.1996.0856
- Nelson, H.D. (1980), 'The dynamics of rotor-bearing systems using finite element', J. Mech. Des., ASME, 102, 793-803
- Owolabi, G.M., Swamidas, A.S.J. and Seshadri, R. (2003), 'Crack detection in beams using changes in frequencies and amplitudes of frequency response functions', J. Sound Vib., 265, 1-22 https://doi.org/10.1016/S0022-460X(02)01264-6
- Papadopoulos, C.A. and Dimarogonas, A.D. (1987), 'Coupled longitudinal and bending vibrations of a rotating shaft with an open crack', J. Sound Vib., 117(1), 81-93 https://doi.org/10.1016/0022-460X(87)90437-8
- Qu, W.L., Chen, W. and Xiao, Y.Q. (2003), 'A two-step approach for joint damage diagnosis of framed structures using artificial neural networks', Struct. Eng. Mech., 16(5), 581-595 https://doi.org/10.1296/SEM2003.16.05.04
- Sekhar, A.S. and Srinivas, B.N. (2002), 'Vibration characteristics of slotted shafts', J. Sound Vib., 251(4), 621-630 https://doi.org/10.1006/jsvi.2001.3643
- Sinou, J.J. (2007), 'A robust identification of single crack location and size only based on pulsations of the cracked system', Struct. Eng. Mech., 25(6), 691-716 https://doi.org/10.12989/sem.2007.25.6.691
- Tada, H., Paris, P.C. and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook (3rd edition). New York, ASME Press
- Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2006a), 'The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval', Finite Elem. Anal. Des., 42, 1269-1280 https://doi.org/10.1016/j.finel.2006.06.006
- Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2007a), 'Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval', Struct. Eng. Mech., 25(5), 613-629 https://doi.org/10.12989/sem.2007.25.5.613
- Xiang, J.W., Chen, X.F., He, Z.J. and Dong, H.B. (2007b), 'The construction of 1D wavelet finite elements for structural analysis', Comput. Mech., 40(2), 325-339 https://doi.org/10.1007/s00466-006-0102-5
- Xiang, J.W., Chen, X.F., He, Z.J. and Zhang, Y.H. (2007c), 'A new wavelet-based thin plate element using Bspline wavelet on the interval', Comput. Mech., 41(2), 243-255 https://doi.org/10.1007/s00466-007-0182-x
- Xiang, J.W., Chen, X.F., Li, B., He, Y.M. and He, Z.J. (2006), 'Identification of crack in a beam based on finite element method of B-spline wavelet on the interval', J. Sound Vib., 296(4-5), 1046-1052 https://doi.org/10.1016/j.jsv.2006.02.019
- Xiang, J.W., Chen, X.F., Mo, Q.Y. and He, Z.J. (2007), 'Identification of crack in a rotor system based on wavelet finite element method', Finite Elem. Anal. Des., 43(14), 1068-1081 https://doi.org/10.1016/j.finel.2007.07.001
- Yuan, S.F., Wang, L. and Peng, G. (2005), 'Neural networks method based on a new damage signature for structural health monitoring', Thin Wall. Struct., 43, 553-563 https://doi.org/10.1016/j.tws.2004.10.003
- Zachiarias, J., Hartmann, C. and Delgado, A. (2004), 'Damage detection on crates of beverages by artificial neural networks trained with finite-element data', Comput. Meth. Appl. Mech. Eng., 193, 561-574 https://doi.org/10.1016/j.cma.2003.10.009
Cited by
- Crack detection in beam-like structures using a wavelet-based neural network vol.226, pp.10, 2012, https://doi.org/10.1177/0954410011421709
- Time domain identification of multiple cracks in a beam vol.35, pp.6, 2010, https://doi.org/10.12989/sem.2010.35.6.773
- The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems vol.50, pp.5, 2014, https://doi.org/10.12989/sem.2014.50.5.679
- Damage detection of shear buildings using frequency-change-ratio and model updating algorithm vol.23, pp.2, 2019, https://doi.org/10.12989/sss.2019.23.2.107
- Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2009, https://doi.org/10.12989/sem.2020.73.4.455