참고문헌
- Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka theory in composite materials",Mech. Mater., 6, 147-157 https://doi.org/10.1016/0167-6636(87)90005-6
- Benveniste, Y., Chen, T. and Dvorak, G. (1990), "The effective thermal conductivity of composites reinforced by coated cyllindrically orthotropic fibers", J. Appl. Phys., 67(6), 2878-2884 https://doi.org/10.1063/1.345463
- Chen, T. and Yang, S.H. (1995), "The problem of thermal conduction for two ellipsoidal inhomogeneities in an anisotropic medium and its relevance to composite materials", Acta Mech., 111, 41-58 https://doi.org/10.1007/BF01187726
- Dvorak, G. and Sejnoha, M. (1996), "Initial failure maps for ceramic and metal matrix composites", Model. Simul. Mater. Sci. Eng., 4, 553-580 https://doi.org/10.1088/0965-0393/4/6/002
- Eshelby, J. (1957), "The determination of the elastic field of an ellipsoidal inclusion and related problems", Proc. Royal Soc., Series A, 241, 376-396 https://doi.org/10.1098/rspa.1957.0133
- Gommers, B., Verpoest, I. and Van Houtte, P. (1998), "The Mori-Tanaka method applied to textile composite materials", Acta Mater., 46(6), 2223-2235 https://doi.org/10.1016/S1359-6454(97)00296-6
- Hatta, H. and Taya, M. (1986), "Equivalent inclusion method for steady state heat conduction in composites", Int. J. Eng. Sci., 24, 1159-1170 https://doi.org/10.1016/0020-7225(86)90011-X
- Hellmich, C. and Ulm, F.J. (2005), "Drained and undrained poroelastic properties of healthy and pathological bone: a poro-micromechanical investigation", Transport. Porous Med., 58, 243-268 https://doi.org/10.1007/s11242-004-6298-y
- Huysmans, G., Verpoest, I. and Van Houtte, P. (1998), "A poly-inclusion approach for the elastic modelling of knitted fabric composites", Acta Mater., 46(9), 3003-3013 https://doi.org/10.1016/S1359-6454(98)00021-4
- Jeong, H., Hsu, D. and Liaw, P. (1998), "Anisotroic conductivities of multiphase particulate metal-matrix composites", Compos. Sci. Technol., 58, 65-76 https://doi.org/10.1016/S0266-3538(97)00093-6
- Kanari, M., Tanaka, K., Baba, S. and Eto, M. (1997), "Nanoindentation behavior of a two-dimensional carboncarbon composite for nuclear applications", Carbon, 35(10-11), 1429-1437 https://doi.org/10.1016/S0008-6223(97)00042-0
- Košková, B. and Vopi ka, S. (2001), "Determination of yarn waviness parameters for C/C woven composites", in: Proceedings of International Conference CARBON '01, Lexington (KY, USA), 1-6
- Kubi ár, L., Bohá , V. and Vretenár, V. (2002), "Transient methods for the measurement of thermophysical properties: The pulse transient method", High Temp. - High Pressures, 34, 505-514 https://doi.org/10.1068/htjr053
- Kuhn, J.L. and Charalambides, P.G. (1999), "Modeling of plain weave fabric composite geometry", J. Compos. Mater., 33(3), 188-220
- Lackner, R., Spiegl, M., Blab, R. and Eberhardsteiner, J. (2005), "Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? - arguments from multiscale analysis", J. Mater. Civil Eng., ASCE, 15, 485-491
- LIM, System Lucia G, User guide, LUCIA - Laboratory Universal Computer Image Analysis, http://www.laboratory-imaging.com
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21, 571-574 https://doi.org/10.1016/0001-6160(73)90064-3
- Ohlhorst, C.W. (1997), Thermal Conductivity Database of Various Strutural Carbon Carbon Composite Materials, NASA Technical Memorandum 4787, Lanley Research Center, Hampton, Virginia
- Piat, R., Tsukrov, I., Mladenov, N., Guellali, M., Ermel, R., Beck, E. and Hoffman, M. (2007), "Material modeling of the CVI-infiltrated carbon felt II. Statistical study of the microstructure, numerical analysis and experimental validation", Compos. Sci. Technol., 66(15), 2769-2775 https://doi.org/10.1016/j.compscitech.2006.03.003
- Piat, R., Tsukrov, I., Mladenov, N., Verijenko, M., Guellali, M., Schnack, E. and Hoffman, M. (2007), "Material modeling of the CVI-infiltrated carbon felt I. Basic formulae, theory and numerical experiments", Compos. Sci. Technol., 66(15), 2997-3003
- Rektorys, K. (Ed.) (1994), Survey of Applicable Mathematics: Volume II, second revised Edition, Vol. 281 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht
- Sko ek, J., Zeman, J. and Šejnoha, M. (2008), "Effective properties of Carbon-Carbon textile composites: application of the Mori-Tanaka method", Model. Simul. Mater. Sci. Eng., (accepted) https://doi.org/10.1088/0965-0393/16/8/085002
- Tomková, B. (2004), Study of porous structure of C/C composites, in: International Conference ICAPM, Evora,Portugal, 379-387
- Tomková, B. and Košková, B. (2004), "The porosity of plain weave C/C composite as an input parameter for evaluation of material properties", in: International Conference Carbon 2004, Providence, USA, 50
- Tomková, B., Šejnoha, M., Novák, J. and Zeman, J. (2008), "Evaluation of effective thermal conductivities of porous textile composites", Int. J. Multiscale Comput. Eng., 6(2), 153-168 https://doi.org/10.1615/IntJMultCompEng.v6.i2.40
- TORAYCA, Technical Data Sheet, Toroyca T800H, Toray Carbon Fibers America, http://www.torayusa.com
- Tsukrov, I., Piat, R., Novak, J. and Schnack, E. (2005), "Micromechanical modeling of porous carbon/carbon composites", Mech. Adv. Mater. Struct., 12, 43-54 https://doi.org/10.1080/15376490490492034
- Vopi ka, S. (2004), Popis geometrie vyztužujícího systému v tkaninových kompozitech [Description of geometry of textile composites reinforcing system], Ph.D. thesis, Technical University of Liberec, in Czech
- Zeman, J. and Šejnoha, M. (2001), "Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix", J. Mech. Phys. Solids, 49(1), 69-90 https://doi.org/10.1016/S0022-5096(00)00027-2
- Zeman, J. and Šejnoha, M. (2004), "Homogenization of balanced plain weave composites with imperfect microstructure: Part I - theoretical formulation", Int. J. Solids Struct., 41(22-23), 6549-6571 https://doi.org/10.1016/j.ijsolstr.2004.05.011
- Šejnoha, M. and Zeman, J. (2002), "Overall viscoelastic response of random fibrous composites with statistically quasi uniform distribution of reinforcements", Comput. Meth. Appl. Mech. Eng., 191(44), 5027-5044 https://doi.org/10.1016/S0045-7825(02)00433-4
- Šejnoha, M. and Zeman, J. (2008), "Micromechanical modeling of imperfect textile composites", Int. J. Eng. Sci., 46, 513-526 https://doi.org/10.1016/j.ijengsci.2008.01.006
- Šejnoha, M., Valenta, R. and Zeman, J. (2004), "Nonlinear viscoelastic analysis of statistically homogeneous random composites", Int. J. Multiscale Comput. Eng., 2(4), 645-673 https://doi.org/10.1615/IntJMultCompEng.v2.i4.80
- Šmilauer, V. and Bittnar, Z. (2006), "Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste", Cement Concrete Res., 36(9), 1708-1718 https://doi.org/10.1016/j.cemconres.2006.05.014
피인용 문헌
- A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature vol.22, pp.6, 2015, https://doi.org/10.1007/s10443-015-9438-3
- Combining Homogenization, Indentation and Bayesian Inference in Estimating the Microfibril Angle of Spruce vol.190, 2017, https://doi.org/10.1016/j.proeng.2017.05.343
- Uncertainty updating in the description of coupled heat and moisture transport in heterogeneous materials vol.219, pp.13, 2013, https://doi.org/10.1016/j.amc.2011.02.078
- A micromechanics-enhanced finite element formulation for modelling heterogeneous materials vol.201-204, 2012, https://doi.org/10.1016/j.cma.2011.09.003
- Multiscale simulations of concrete mechanical tests vol.236, pp.18, 2012, https://doi.org/10.1016/j.cam.2012.01.009
- An Analytical Model of Thermal Conductivity for Carbon/Carbon Composites with Pitch-Based Matrix vol.7, pp.1, 2015, https://doi.org/10.1155/2014/242586
- Compression and reconstruction of random microstructures using accelerated lineal path function vol.122, 2016, https://doi.org/10.1016/j.commatsci.2016.04.044
- Modeling glulams in linear range with parameters updated using Bayesian inference vol.138, 2017, https://doi.org/10.1016/j.engstruct.2017.02.021
- Elastic Soft-Core Sandwich Plates: Critical Loads and Energy Errors in Commercial Codes Due to Choice of Objective Stress Rate vol.80, pp.4, 2013, https://doi.org/10.1115/1.4023024
- An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage pp.1537-6532, 2019, https://doi.org/10.1080/15376494.2018.1562135
- A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability vol.38, pp.4, 2009, https://doi.org/10.12989/sem.2011.38.4.503
- Numerical analysis of out-of-plane thermal conductivity of C/C composites by flexible oriented 3D weaving process considering voids and fiber volume fractions vol.35, pp.14, 2009, https://doi.org/10.1557/jmr.2020.172
- Design optimization for thermal conductivity of plain-woven textile composites vol.255, pp.None, 2021, https://doi.org/10.1016/j.compstruct.2020.112830
- Thermal conductivity of a thick 3D textile composite using an RVE model with specialized thermal periodic boundary conditions vol.3, pp.1, 2009, https://doi.org/10.1088/2631-6331/abd7cd