초기 소재와 소성조건이 투수반응벽체인 대공극흡착제 조상에 미치는 영향

Influence of the Starting Materials and Sintering Conditions on Composition of a Macroporous Adsorbent as Permeable Reactive Barrier

  • 정덕영 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 이봉한 ((주)세와비젼) ;
  • 정재현 ((주)세와비젼)
  • 투고 : 2009.05.12
  • 심사 : 2009.06.08
  • 발행 : 2009.08.28

초록

본 실험은 지하수에 포함된 중금속을 제거하기 위한 투수성반응벽체를 개발하기 위하여 대공극 형성물질로 분쇄한 폐지와 식물섬유를 그리고 구조형성소재로 Na와 Ca-벤토나이트를 사용하여 소성 후 소성된 소재의 표면 구조와 공극발달 특성을 조사하였다. 그러나 소성은 중금속 제거율을 급격히 감소시키는 양이온교환용량에 영향을 미치므로 2:1 점토광물 중에서 양이온교환용량이 큰 점토광물과 일반 산업물질을 소재를 선정하였다. 연구 결과는 살펴보면 소성온도가 증가함에 따라 소성에 사용된 소재의 기존 CEC의 10 % 이하로 급격히 감소되는 경향을 보여주었다. 일축 압축 시험 결과 처리간 용적밀도는 큰 차이가 없었지만 Na와 Ca-벤토나이트를 소성소재 모두 폐지가 5 % 정도 처리하였을 때 압축강도가 가장 높은 것으로 나타났다. 그리고 소성온도와 기간 모두 공극 형성에 영향을 미친 것으로 조사되었다. 이러한 연구 결과로부터 다공체 내에 형성된 공극은 수분 투수 특성과 중금속 제거에 모두 영향을 미칠 것이라 추정하였다.

In this investigation, we observed surface morphology and porosity of a macroporous adsorbent made of Na-bentonite and Ca-bentonite as structure formation materials and grounded waste paper as macropore forming material for the development of a permeable reactive barrier to remove heavy metals in groundwater. Therefore, we selected minerals having higher cation exchange capacity among 2:1 clay minerals and other industrial minerals because sintering can significantly influence cation exchange capacity, resulting in drastic decrease in removal of heavy metals. The results showed that the increasing sintering temperature drastically decreased CEC by less than 10 % of the indigenous CEC carried by the selected minerals. One axial compressibility test results showed that the highest value was obtained from 5% newspaper waste pulp for both structure formation materials of Na-bentonite and Ca-bentonite although there were not much difference in bulk density among treatments. The pore formation influenced by sintering temperature and period contributes removal of heavy metals passing through the sintered macroporous media having different water retention capacity.

키워드

참고문헌

  1. Alloway, B.J. 1995. Heavy metals in soils. John Wiley and Sons, New York
  2. Deng, Z.-Y., T. Fukasawa, and M. Ando. 2001. High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3, J. Am. Ceram. Soc. 84.3. pp. 485-491 https://doi.org/10.1111/j.1151-2916.2001.tb00687.x
  3. Ikhsan, J., Johnson, B.B., and Wells, J. D. 1999. A comparative study of the adsorption of transition metals on kaolinite. Journal of Colloid and Interface Science 217, 403-410 https://doi.org/10.1006/jcis.1999.6377
  4. Jo, Y.M. 1997. Characterization of ceramic composite membrane filters for hot gas cleaning, Power Technol. 91.1. pp. 55-62 https://doi.org/10.1016/S0032-5910(96)03246-9
  5. Kabata-Pendias A. 2001. Trace elements in soils and plants. Third Edition, CRC Press, NY.
  6. Liu, Y.F., X.Q. Liu, H. Wei, and G.Y. Meng, Porous mullite ceramics from national clay produced by gelcasting, Ceram. Int. 27 (2001), pp. 1-7 https://doi.org/10.1016/S0272-8842(00)00034-1
  7. Dane, J. H. and G. C. Topp. 2002. Methods of Soil Analysis. Part 4. Physical Methods. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
  8. Sparks, D.L. 1996. Methods of soils analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI.
  9. Manceau, A., B. Lanson, M.L. Schlegel, J.C. Harge, M. Musso, L.Eybert-Berard, J.L. Hazemann, D. Chateigner, and G.M. Lamble.2000. Quantitative Zn speciation in smelter- contaminated soils by EXAFS spectroscopy. Am. J. Sci. 300:289-343. https://doi.org/10.2475/ajs.300.4.289
  10. McBride, M.B. 1999. Chemisorption and precipitation reactions. p.B265 -B302. In M.E. Sumner (ed.) Handbook of soil science. CRC Press, Boca Raton, FL
  11. McBride, M.B., S. Sauve, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd, and Pb in contaminated soils. Eur. J. Soil Sci. 48:337-346 https://doi.org/10.1111/j.1365-2389.1997.tb00554.x
  12. McLaughlin, M.J., R.E. Hamon, R.G. McLaren, T.W. Speir, and S.L. Rogers. 2000. Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust. J. Soil Res. 38:1037-1086.Soil Sci. Plant Anal. 31:1661-1700 https://doi.org/10.1071/SR99128
  13. McMahon, P.B. 1997. "Field Evaluation of a Permeable Reactive Barrier Containing Zero-Valence Iron at the Denver Federal Center." Remediation Technologies Development Forum, Permeable Barriers Action Team meeting. Virginia Beach, Virginia
  14. She, J.H. and T. Ohji. 2003. Fabrication and characterization of highly porous mullite ceramics, Mater. Chem. Phys. 80. pp. 610-614 https://doi.org/10.1016/S0254-0584(03)00080-4
  15. Shoemaker, S.H., Greiner, J.F., and R.W. Gillham. 1996. "Permeable Reactive Barriers in Assessment of Barrier Containment Technologies": A Comprehensive Treatment for Environmental Remediation Applications. Rumer, R.R. and Mitchell, J.K. (eds.). U.S. DOE, U. S. EPA, and DuPont Company. pp. 301353
  16. Spark, K.M., J.D. Wells, and B.B. Johnson. 1995. Characterizing trace metals adsorption on kaolinite. European Journal of Soil Science 46, 633-640 https://doi.org/10.1111/j.1365-2389.1995.tb01359.x
  17. Starr, R.C. and J.A. Cherry. 1994. "In situ remediation of contaminated groundwater: The funnel-and-gate system." Ground Water 32(3): 46
  18. Tiller, K.G. 1989. Heavy Metals in soils and their environmental significance. Advances in Soil Science 9, 114-141