Verification of TDR and FDR Sensors for Volumetric Soil Water Content Measurement in Sandy Loam Soil

사양토에서의 용적수분 함량 측정을 위한 TDR 및 FDR 센서의 검증

  • Hur, Seung-Oh (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Ha, Sang-Keun (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
  • Received : 2009.02.16
  • Accepted : 2009.03.06
  • Published : 2009.04.30

Abstract

This study was to verify and calibrate seven kinds of soil water sensors for volumetric soil water content(VSWC) measurement under field. Types of sensors were TDR (Time Domain Reflectometry) and FDR(Frequency Domain Reflectometry). Two kinds of TDR were TRIME(profile type), and Mini-TRASE(rod type). Five kinds of FDR were EasyAG, EnviroSCAN, PR-1(profile type), and WET-1(rod type). VSWC by TRIME and Mini-TRASE compared with VSWC by soil core showed the standard error of about 2.4%, and 1.4% which is the smallest value among all the sensors used in the experiment, respectively. The errors of EasyAG and EnviroSCAN analyzed with scaled frequency(SF) were about 2.6%, and 2.8% and those by 1 versus 1 correspondence were about 2.6%, and 2.6%, respectively. WET-1 showed about 2.0% of error, which is the smallest value among errors by FDR sensors. PR-1 with the error of about 4.7% should be hard for application in field. Therefore, users on soil water sensors have to take into consideration the errors of sensors revealed after the calibration for the correct measurement of VSWC in field. The rest except for PR-1 among the sensors could be used for VSWC measurement with 1.4~2.6% error.

토양의 용적수분 함량을 현장에서 측정할 수 있어 토양 내 물 이동이나 관개관리에 효과적으로 이용할 수 있는 6종의 토양수분 센서에 대한 검정을 실시했다. TDR형태의 센서가 2종으로 토양단면측정용인 TRIME과 탐침형태인 Mini-TRASE이었으며, 4종은 FDR 형태의 센서로 토양단면 측정용인 EasyAG, EnviroSCAN, PR-1과 탐침형태의 WET-1 센서였다. 코어로 측정한 용적수분함량과 비교한 결과 TRIME은 1차 선형식의 관계에서 코어측정값과 약 2.4%의 오차를 나타냈고, Mini-TRASE는 코어 용적 수분함량과 약 1.4%의 오차를 나타냈으며, 이 오차는 실험에 사용했던 7종의 센서들 중에서 가장 작은 값이었다. EasyAG는 SF로 분석했을 때는 코어측정값과 약 2.6%의 오차를 나타냈고, 센서로 측정한 토양 수분 함량을 코어수분함량과 직접적으로 비교했을 때도 역시 약 2.6%의 오차를 나타냈다. EnviroSCAN은 SF로 분석했을 때는 코어측정값과 약 2.8%의 오차를 나타냈고, 센서로 측정한 토양수분 함량을 코어수분 함량과 직접적으로 비교했을 때는 2.6%의 오차를 나타냈다. WET-1은 센서로 측정한 값과 코어로 실측한 값 사이에 약 2.0%의 오차가 있음을 보여주고 있으며, 이것은 검정에 사용했던 FDR 센서들 중에서는 가장 작은 값이었다. PR-1은 측정시 access 튜브 내에서 방향을 조금씩 바꿀 때마다 측정값이 달리 나오는 경우가 많아 수분함량 측정횟수가 많지 않았으나 실측값과 약 4.7%의 오차를 보였다. 결론적으로 센서의 정확성을 검정하기 위해 사용된 6종의 센서 중 PR-1은 현장 측정에 문제가 있을 것으로 여겨진다.

Keywords

References

  1. Bae, B.S., W.J. Choi, G.H. Han, K.H. Han, SH. Yoo, and H.M. Ro. 2003 Calculation of Bulk and Solution Electrical Conductivity of Soil Using Time Domain Reflectometry Measurements. J. Korean Soc. Soil Sci. Fert. 36:1-7
  2. Baumhardt, R.L., R.J. Lascano and S.R. Evett. 2000. Soil material, temperature and salinity effects on calibration of multisensor capacitance probes. Soil Sci. Soc. Amer. J. 64:1940-1946 https://doi.org/10.2136/sssaj2000.6461940x
  3. Blonquist Jr. J.M., S.B. Jones and D.A. Robinson. 2006. Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor, Agricultural Water Management, 84:153-165 https://doi.org/10.1016/j.agwat.2006.01.014
  4. Canto, G., P.J. Tejada, J.C. Munoz, J.A. Sobrino, M.A. Soriano, E. Fereres, V. Vega and M. Pastor. 2007. Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER. Remote Sensing of Environment, 107:455-470 https://doi.org/10.1016/j.rse.2006.09.014
  5. Coners, H. and C. Leuschner. 2005. In situ measurement of fine root water absorption in three temperate tree species-Temporal variability and control by soil and atmospheric factors. Basic and Applied Ecology. 6:395-405 https://doi.org/10.1016/j.baae.2004.12.003
  6. Dean, T.J., J.P. Bell and A.J. Baty. 1987. Soil moisture measurement by an improved capacitance technique: Part I. Sensor design and performance. J. Hydrol. 93:67-78 https://doi.org/10.1016/0022-1694(87)90194-6
  7. Evett S.R. and J.L. Steiner. 1995. Precision of neutron scattering and capacitance type moisture gauges based on field calibration.. Soil Sci. Soc. Am. J. 59:961-968 https://doi.org/10.2136/sssaj1995.03615995005900040001x
  8. Galvez, J.F and L.P. Simmonds. 2006. Monitoring and modelling the three-dimensional flow of water under drip irrigation, Agricultural Water Management, 83:197-208 https://doi.org/10.1016/j.agwat.2005.11.008
  9. Gong, D., S. Kang, L. Zhang, T. Du and L. Yao. 2006. A twodimensional model of root water uptake for single apple trees and its verification with sap flow and soil water content measurements, Agricultural Water Management, 83:119-129 https://doi.org/10.1016/j.agwat.2005.10.005
  10. Ledieu, J., P. De Ridder, P. De Clerck and S. Dautrebande. 1986. A method of measuring soil moisture by time-domain reflectometry. J. of Hydrology. 88:319-328 https://doi.org/10.1016/0022-1694(86)90097-1
  11. McCann, I., E. Kee, J. Adkins, E. Ernest and J. Ernest. 2007. Effect of irrigation rate on yield of drip-irrigated seedless watermelon in a humid region, Scientia Horticulturae, 113:155-161 https://doi.org/10.1016/j.scienta.2007.03.008
  12. Paltineanu, I.C. and J.L. Starr. 1997. Real-time soil water dynamics using multisensor capacitance probes: Laboratory calibration. Soil Sci. Soc. Am. J. 61:1576-1585 https://doi.org/10.2136/sssaj1997.03615995006100060006x
  13. Scott, H.D. 2000. Soil Physics - Agricultural and Environmental Applications. p. 166-167. Iowa State University Press. Ames, USA
  14. Starr, J.L. and I.C. Paltineanu. 1998. Soil water dynamics using multisensor capacitance probes in nontraffic interrows of corn. Soil Sci. Soc. Am. J. 62:114-122 https://doi.org/10.2136/sssaj1998.03615995006200010015x
  15. Topp, G.C., J.L. Davis, and A.P. Annan, 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 16:574-582 https://doi.org/10.1029/WR016i003p00574
  16. Topp, G.C.; M. Yanuka, W.D. Zebchuk and S. Zegelin. 1988. Determination of electrical conductivity using time domain reflectometry: Soil and water experiments in coaxial lines. Water Resour. Res. 24:945-952 https://doi.org/10.1029/WR024i007p00945
  17. Yoo S. H. 2002. Soil encyclopedia. Seoul National University Press. Seoul, Korea