Abstract
Electrochemical methods have been widely used to study the performances and mechanisms for the degradation of organic and inorganic coatings. In this study, EN(Electrochemical noise) measurement was applied to the protective properties and review the parameters analyzed noise signals in the time and in the frequency domain for epoxy resin based coated steels during exposure to hot sea water($40^{\circ}C$) and salt spray for 200 days. It was also found that $R_n$(Noise resistance), $R_{sn}$($f_{min}$)(Spectral noise resistance) and 2H(Hurst exponent) represented the performance of epoxy coated steels. $R_n$ can be determined as the ratio of the standard deviations of potential and current noise signals and is decreased to exposure time. Data qualities can be easily checked by PSD(Power Spectral Density) plot and $V_{psd}$, $I_{psd}$ and $R_{sn}$($f_{min}$) is useful to research the protective performances and mechanisms of coated steels. Hurst exponent represents the degradation of coated steels. But, it is difficult to directly apply the protective criterion to the evaluation of epoxy coated steels used the shipbuilding processes.