DOI QR코드

DOI QR Code

Mössbauer 분광법에 의한 Ni1-xMgxFe2O4 Ferrite의 자기구조 연구

The Study of Magnetic Structure of Ni1-xMgxFe2O4 Ferrite System by Mössbauer Spectroscopy

  • 윤인섭 (강원대학교 방송영상기술) ;
  • 백승도 (강남대학교 교양학부)
  • Yoon, In-Seop (Division of Broadcasting Visual Arts & Technology, Kangwon University) ;
  • Baek, Seung-Do (Division of general education, Kangnam University)
  • 발행 : 2009.06.30

초록

상온에서 준강자성을 띠는 $Ni_{1-x}Mg_xFe_2O_4$ ferrite 내에 존재하는 금속양이온 Ni을 Mg로 대치시킬 때 나타나는 결정학적 구조의 변화와 자기적 성질 변화, 그리고 양이온의 분포를 X-선 회절무늬와 $M{\ddot{o}}ssbauer$ spectrum을 측정하고 분석하여 연구하였다. $NiFe_2O_4$ ferrite의 $M{\ddot{o}}ssbauer$ spectrum 공명흡수면적비(oct/tet)는 1.007로서 거의 완전한 inverse spinel 구조를 형성하나 Mg의 함량인 x가 증가함에 따라 Mg 이온이 tetrahedral site를 점유하게 되어 면적비(oct/tet)가 점차 증가하여 $MgFe_2O_4$의 경우 1.449로서 불완전한 inverse spinel 구조를 형성한다. 시료들의 isomer shift 값으로부터 $Ni_{1-x}Mg_xFe_2O_4$ ferrite계 내에 존재하는 Fe는 $Fe^{3+}$ 상태임을 알 수 있다. 비자성 이온인 Mg의 함량이 증가함에 따라 최인접 금속 양이온에 의해 발생되는 A-B exchange interaction이 발생할 확률이 작아져서 magnetic hyperfine field가 감소하며 Yafet-Kittel 자기구조를 나타낸다.

$Ni_{1-x}Mg_xFe_2O_4$ ferrite system was studied by using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy. The samples were prepared by ceramic sintering method with Mg content x. The X-ray diffraction patterns of samples show phase of cubic spinel structure. There are no remarkable changes of lattice constants in $Ni_{1-x}Mg_xFe_2O_4$ ferrite system. The $M{\ddot{o}}ssbauer$ spectra were consisted of two sets of six lines, respectively, corresponding to $Fe^{3+}$ at tetrahedral and octahedral sites. The magnetic hyperfine field of samples was decreased as increasing Mg contents x in both sites and it was shown Yafet-Kittel magnetic structure. $NiFe_2O_4$ was shown complete inverse spinel, but $NiFe_2O_4$ was shown partial inverse spinel which absorption area ratio (oct/tet) was 1.449 in $M{\ddot{o}}ssbauer$ spectrum.

키워드

참고문헌

  1. B. D. Cullity, Introduction Magnetic Material (Addison Wesley, 1972) pp. 56
  2. A. Goldman, Modern Ferrite Technology (Van Nostrand, New York, 1990) pp. 23
  3. S. W. Lee, S. J. Kim, and C. S. Kim, J. Korean Phys. Soc., 48, 583 (2006)
  4. C. S. Kim, S. W. Lee, S. I. Park, J. Y. Park, and Y. J. Oh, J. Appl. Phys., 79(8), 5428 (1996) https://doi.org/10.1063/1.362328
  5. S. W. Lee, D. H. Yoon, S. Y. An, W. C. Kim, and C. S. Kim, J. Magn., 4(4), 115 (1999)
  6. K. J. Standley, Oxide Magnetic Materials (Clarendon Press, Oxford, 1972) pp. 28
  7. P. Gutlich; in Topics in Applied Physics vol. 5, edited by U. Gonser (SpringerVerlag, Berlin Heidelberg, New York, 1975) pp.74
  8. J. J. Van Loef, Physica, 32, 2102 (1966) https://doi.org/10.1016/0031-8914(66)90171-6
  9. A. Hudson and H. J. Whitfield, Mod. Phys., 12, 165 (1967)
  10. L. Nel, Ann. Phys. (Paris), 3, 137 (1948)
  11. Y. Yafet and C. Kittel, Phys. Rev., 87, 290 (1952) https://doi.org/10.1103/PhysRev.87.290
  12. C. M. Srivastava, S. N. Shringi, and R. G. Srivastava, Phys. Rev. B, 14, 2041 (1976) https://doi.org/10.1103/PhysRevB.14.2041