Antibacterial Activity of (2S)-7,4'-dihydroxy-5-methoxy-8-(${\gamma}$, ${\gamma}$-dimethylally)-flavanone against Methicillin-Resistant Staphylococcus aureus

  • Kim, Eun-Sook (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine, Wonkwang University)
  • Published : 2009.06.25

Abstract

The emergence of methicillin-resistant of Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) has led to an urgent need for the discovery and development of new antibacterial agents. As part of an ongoing investigation into the antibacterial properties of the natural products, (2S)-7,4'-dihydroxy-5-methoxy-8-(${\gamma}$, ${\gamma}$-dimethylally)-f1avanone (2S-DMDF), isolated from the roots of Sophora flavescens, was found to be antibacterial active MRSA and VRE. Sophora flavescens has been used as antibacterial, antiviral, antiprotozoal, anti-inflammatory. Therefore, this study investigated the antibacterial activity of 2S-DMDF against all the bacterial strains tested. In this result, at the end point of an optically clear well, the minimum inhibitory concentrations (MICs) ranged from 0.97 to 15.6 mg/ml for 2S-DMDF, from 125 to 256 mg/ml for ampicillin, and from 64 to 512 mg/ml for gentamicin with MRSA, also, 7.8 to 15.6 mg/ml for 2S-DMDF, from 125 to 256 mg/ml for ampicillin, and from 512 to 1024< mg/ml for vacomicin with VRE. These findings indicated that the application of the tested 2S-DMDF alone might prove useful in the control and treatment of MRSA and VRE infections.

Keywords

References

  1. Rice, L.B. Antimicrobial resistance in gram-positive bacteria. Am J Infect Control. 34: S11-S9, 2006 https://doi.org/10.1016/j.ajic.2006.05.220
  2. Fujita, N. Vancomycin-resistant Enterococci (VRE)--for VRE endemics in apan. Rinsho Biseibutshu Jinsoku Shindan Kenkyukai Shi. 16: 1-16, 2005
  3. Heslop, A., Ovesen, T. Severe acute middle ear infections: microbiology and treatment. Int J Pediatr Otorhinolaryngol. 70: 1811-1816, 2006 https://doi.org/10.1016/j.ijporl.2006.06.009
  4. Pajor, A., Durko, M., Jankowski, A., Stańczyk, A. Bartoszko-Tyczkowska, Bacteriological evaluation in chronic otitis media. Otolaryngol Pol. 60: 757-763, 2006
  5. da Cunha Mde, L., Calsolari, R.A., Júnior, J.P. Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci. Microbiol Immunol. 51: 381-390, 2007 https://doi.org/10.1111/j.1574-695X.2007.00315.x
  6. Rosec, J.P., Guiraud, J.P., Dalet, C., Richard, N. Enterotoxin production by staphylococci isolated from foods in France. Int J Food Microbiol. 35: 213-221, 1997 https://doi.org/10.1016/S0168-1605(96)01234-2
  7. Brewer, J.D., Hundley, M.D., Meves, A., Hargreaves, J., McEvoy, M.T., Pittelkow, M.R. Staphylococcal scalded skin syndrome and toxic shock syndrome after tooth extraction. J Am Acad Dermatol. 59: 342-346, 2008 https://doi.org/10.1016/j.jaad.2008.02.032
  8. Schlievert, P.M., Shands, K.N., Dan, B.B., Schmid, G.P., Nishimura, R.D. Identification and characterization of an exotoxin from Staphylococcus aureus associated with toxic-shock syndrome. J Infect Dis. 143: 509-516, 1981 https://doi.org/10.1093/infdis/143.4.509
  9. Linton, A.H., Hedges, A.J., Bennett, P.M. Monitoring for the development of antimicrobial resistance during the use of olaquindox as a feed additive on commercial pig farms. J Appl Bacteriol. 64: 311-327, 1988 https://doi.org/10.1111/j.1365-2672.1988.tb01876.x
  10. Botta, B., Vitali, A., Menendez, P., Misiti, D., Delle Monache, G. Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem. 12: 717-739, 2005
  11. Kang, S.S., Kim, J.S., Son, K.H., Chang, H.W., Kim, H.P. A new prenylated flavanone from the roots of Sophora flavescens. Fitoterapia, 71: 511-515, 2000 https://doi.org/10.1016/S0367-326X(00)00165-9
  12. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard 9th ed. Document M100-S19. Clinical and Laboratory Standards Institute, Villanova, Pa, USA, 2009
  13. Coque, T.M., Tomayko, J.F., Ricke, S.C., Okhyusen, P.C., Murray, B.E. Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States. Antimicrob Agents Chemother. 40: 2605-2609, 1996
  14. Ryffel, C., Tesch, W., Birch-Machin, I., Reynolds, P.E., Barberis-Maino, L., Kayser, F.H., Berger-B$\ddot{a}$chi, B. Sequence comparison of mecA genes isolated from methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Gene. 28: 137-138, 1990
  15. Becker, K., Roth, R., Peters, G. Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J Clin Microbiol. 36: 2548-2553, 1998
  16. Shahverdi, A.R., Fakhimi, A., Zarrini, G., Dehghan, G., Iranshahi, M. Galbanic acid from Ferula szowitsiana enhanced the antibacterial activity of penicillin G and cephalexin against Staphylococcus aureus. Biol Pharm Bull. 30: 1805-1807, 2007 https://doi.org/10.1248/bpb.30.1805
  17. Aucken, H.M., Ganner, M., Murchan, S., Cookson, B.D., Johnson, A.P. A new UK strain of epidemic methicillin-resistant Staphylococcus aureus (EMRSA-17) resistant to multiple antibiotics. J Antimicrob Chemother. 50: 171-175, 2002 https://doi.org/10.1093/jac/dkf117
  18. Tsiodras, S., Gold, H.S., Sakoulas, G., Eliopoulos, G.M., Wennersten, C., Venkataraman, L., Moellering, R.C., Ferraro, M.J. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet. 358: 207-208, 2001 https://doi.org/10.1016/S0140-6736(01)05410-1
  19. Toh, S.M., Xiong, L., Arias, C.A., Villegas, M.V., Lolans, K., Quinn, J., Mankin, A.S. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol. 64: 1506-1514, 2007 https://doi.org/10.1111/j.1365-2958.2007.05744.x
  20. Hatano, T., Shintani, Y., Aga, Y., Shiota, S., Tsuchiya, T., Yoshida, T. Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem Pharm Bull (Tokyo). 48: 1286-1292, 2000 https://doi.org/10.1248/cpb.48.1286
  21. Fukai, T., Marumo, A., Kaitou, K., Kanda, T., Terada, S., Nomura, T. Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia. 73: 536-539, 2002 https://doi.org/10.1016/S0367-326X(02)00168-5
  22. Fukai, T., Oku, Y., Hou, A.J., Yonekawa, M., Terada, S. Antimicrobial activity of hydrophobic xanthones from Cudrania cochinchinensis against Bacillus subtilis and methicillin-resistant Staphylococcus aureus. Chem Biodivers. 1:1385-1390, 2004 https://doi.org/10.1002/cbdv.200490101
  23. Syu, W.J., Shen, C.C., Lu, J.J., Lee, G.H., Sun, C.M. Antimicrobial and cytotoxic activities of neolignans from Magnolia officinalis. Chem Biodivers. 1: 530-537, 2004 https://doi.org/10.1002/cbdv.200490046
  24. Sato, M., Tanaka, H., Tani, N., Nagayama, M., Yamaguchi, R. Different antibacterial actions of isoflavones isolated from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol. 43: 243-248, 2006 https://doi.org/10.1111/j.1472-765X.2006.01963.x
  25. Kang, T.H., Jeong, S.J., Ko, W.G., Kim, N.Y., Lee, B.H., Inagaki, M., Miyamoto, T., Higuchi, R., Kim, Y.C. Cytotoxic lavandulyl flavanones from Sophora flavescens. J Nat Prod. 63: 680-681, 2000 https://doi.org/10.1021/np990567x
  26. Dai, S., Chan, M.Y., Lee, S.S., Ogle, C.W. The antiarrhythmic effects of Sophora flavescens Ait. in rats and mice. Am J Chin Med. 14: 119-123, 1986 https://doi.org/10.1142/S0192415X86000193
  27. Xiang, Q., Tan, M.Q., Huang, Y.H. Anti-leukemia effect of sophora flavescens combined with the low molecular weight natural tumor suppressor of the human fetal liver and its mechanism. Hunan Yi. Ke Da Xue Xue Bao. 27: 108-110, 2002
  28. Sun, M., Han, J., Duan, J., Cui, Y., Wang, T., Zhang, W., Liu, W., Hong, J., Yao, M., Xiong, S., Yan, X. Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother Res. 21: 269-277, 2007 https://doi.org/10.1002/ptr.2066
  29. Zhang, L., Xu, L., Xiao, S.S., Liao, Q.F., Li, Q., Liang, J., Chen, X.H., Bi, K.S. Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry. J Pharm Biomed Anal. 44: 1019-1028, 2007 https://doi.org/10.1016/j.jpba.2007.04.019
  30. Kim, D.W., Chi, Y.S., Son, K.H., Chang, H.W., Kim, J.S., Kang, S.S., Kim, H.P. Effects of sophoraflavanone G, a prenylated flavonoid from Sophora flavescens, on cyclooxygenase-2 and in vivo inflammatory response. Arch Pharm Res. 25: 329-335, 2002 https://doi.org/10.1007/BF02976635
  31. Piao, X.L., Piao, X.S., Kim, S.W., Park, J.H., Kim, H.Y., Cai, S.Q. Identification and characterization of antioxidants from Sophora flavescens. Biol Pharm Bull. 29: 1911-1915, 2006 https://doi.org/10.1248/bpb.29.1911
  32. Kim, J.H., Ryu, Y.B., Kang, N.S., Lee, B.W., Heo, J.S., Jeong, I.Y., Park, K.H. Glycosidase inhibitory flavonoids from Sophora flavescens. Biol Pharm Bull. 29: 302-305 2006
  33. Hwang, J.S., Lee, S.A., Hong, S.S., Lee, K.S., Lee, M.K., Hwang, B.Y., Ro, J.S. Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Arch Pharm Res. 28: 190-194, 2005 https://doi.org/10.1007/BF02977714
  34. Kang, T.H., Jeong, S.J., Ko, W.G., Kim, N.Y., Lee, B.H., Inagaki, M., Miyamoto, T., Higuchi, R., Kim, Y.C. Cytotoxic lavandulyl flavanones from Sophora flavescens. J Nat Prod. 63: 680-681, 2000 https://doi.org/10.1021/np990567x
  35. De Naeyer, A., Vanden Berghe, W., Pocock, V., Milligan, S., Haegeman, G., De Keukeleire, D. Estrogenic and anticarcinogenic properties of kurarinone, a lavandulyl flavanone from the roots of Sophora flavescens. J Nat Prod. 67: 1829-1832, 2004 https://doi.org/10.1021/np040069a
  36. Son, J.K., Park, J.S., Kim, J.A., Kim, Y., Chung, S.R., Lee, S.H. Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity. Planta Med. 69: 559-561, 2003 https://doi.org/10.1055/s-2003-40643
  37. Kim, S.J., Son, K.H., Chang, H.W., Kang, S.S., Kim, H.P. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol Pharm Bull. 26: 1348-1350, 2003 https://doi.org/10.1248/bpb.26.1348
  38. Chi, Y.S., Jong, H.G., Son, K.H., Chang, H.W., Kang, S.S., Kim, H.P. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: cyclooxygenases and lipoxygenases. Biochem Pharmacol. 62: 1185-1191, 2001 https://doi.org/10.1016/S0006-2952(01)00773-0
  39. Jung, H.J., Kang, S.S., Woo, J.J., Choi, J.S. A new lavandulylated flavonoid with free radical and ONOO- scavenging activities from Sophora flavescens. Arch Pharm Res. 28: 1333-1336, 2005 https://doi.org/10.1007/BF02977897