DOI QR코드

DOI QR Code

구름-장파복사 상호작용이 아시아 몬순에 미치는 영향

The Impact of Interaction between Cloud and Longwave Radiation on the Asian Monsoon Circulation

  • 유근혁 (서울대학교 지구환경과학부 대기과학) ;
  • 손병주 (서울대학교 지구환경과학부 대기과학)
  • Ryu, Geun-Hyeok (School of Environment and Earth Science, Seoul National University) ;
  • Sohn, Byung-Ju (School of Environment and Earth Science, Seoul National University)
  • 발행 : 2009.02.28

초록

몬순 기간에 구름의 복사 강제력의 영향을 파악하기 위하여 1998년 4월부터 9월까지 International Satellite Cloud Climatology Project (ISCCP) 구름자료와 GEWEX Asian Monsoon Experiment (GAME) 재분석 자료를 입력 자료로 복사 모델을 수행하여 3차원의 장파 복사 플럭스를 구하였다. 구름에 의한 대기 복사 가열은 구름을 포함한 평균 대기와 맑은 대기에서의 복사 가열율의 차이를 이용하여 계산하였다 구름에 의한 복사 가열율이 아시아 몬순에 미치는 영향을 중점적으로 살펴보았다. 구름에 의한 복사 가열은 인도양에서 최대를 티벳 고원에서 최소를 나타내어, 남북으로 차등 가열의 경도를 나타내었다. 이러한 차등 가열이 대기 순환의 최대 원인임을 고려해볼 때, 인도양과 티벳 고원에서의 구름에 의한 차등 가열의 경도는 해들리 타입의 남북 몬순 순환을 강화시키고 있다. 또한 운정에서의 가열, 운저에서의 냉각의 형태로 나타나는 구름의 복사 가열 분포는, 대기의 불안정성을 높여서 몬순 순환을 증대시킬 수 있는 역할을 하고 있다.

Three-dimensional distributions of longwave radiation flux for the April-September 1998 period are generated from radiative transfer calculations using the GEWEX Asian Monsoon Experiment (GAME) reanalysis temperature and humidity profiles and International Satellite Cloud Climatology Project (ISCCP) cloudiness as inputs to understand the effect of cloud radiative forcing in the monsoon season. By subtracting the heating of the clear atmosphere from the cloudy radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the Asian monsoon. Cloud-induced heating exhibits its maximum heating areas within the Indian Ocean and minimum heating over the Tibetan Plateau, which establishes the north-south oriented differential heating gradient. Considering that the differential heating is a ultimate source generating the atmospheric circulation, the cloud-induced heating gradient established between the Indian Ocean and the Plateau can enhance the strength of the north-south Hadley-type monsoon circulation. Cooling at cloud top and warming at cloud bottom, which are the vertical distributions of cloud-induced heating, can exert on the monsoon circulation by altering the atmospheric stability.

키워드

참고문헌

  1. 손병주, 1996, 구름이 지표장파복사 수지에 미치는 영향. 한국기상학회지, 32, 229-242
  2. Friedrich, A.S. and McCreary, J.P., 2001, The monsoon circulation of the Indian Ocean. Elsevier Science, Oxford, UK, 123 p.
  3. Hartmann, D.L., Ockert-Bell, M.E., and Marc, L.M., 1992, The Effect of cloud type on Earth's energy balance: Global analysis. Journal of Climate, 5, 1281-1304 https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2
  4. He, H., McGinnis, J.W., Song, Z. and Yanai, M., 1987, Onset of the Asian monsoon in 1979 and the effect of the Tibetan Plateau. Monthly Weather Review, 112, 966-989 https://doi.org/10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2
  5. Hu, Q. and Randall, DA, 1994, Low-frequency oscillations in radiative-convective system. Journal of Atmospheric Science, 51, 1089-1099 https://doi.org/10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO;2
  6. Lau, K.M. and Li, M.T., 1984, The Monsoon of East Asia and its Global Associations: A Survey. Bulletin of the American Meteorological Society, 65, 114-125 https://doi.org/10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2
  7. Li, C. and Yanai, M., 1996, The Onset and Interannual Variability of the Asian summer Monsoon in Relation to Land-Sea Thermal Contrast. Journal of Climate, 9, 358-375 https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2
  8. Liou, K.N., 2002, An Introduction to Atmospheric Radiation. Academic Press, San Diego, USA, 583 p
  9. Mehta, A.Y. and Smith, EA, 1997, Variability of radiative cooling during Asian Summer Monsoon and its influence on intraseasonal waves. Journal of Atmospheric Science, 54, 941-966 https://doi.org/10.1175/1520-0469(1997)054<0941:VORCDT>2.0.CO;2
  10. Ocker-Bell, M.E. and Hartmann, D.L., 1992, The Effect of cloud type on Earth's energy balance: Results for selected regions. Journal of Climate, 5,1157-1171 https://doi.org/10.1175/1520-0442(1992)005<1157:TEOCTO>2.0.CO;2
  11. Prabhakara, C., Fraser, R.S., Dalu, G, Wu, M.L., Curran, R.J., and Styles, T., 1988, The cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. Journal of Applied Meteorology, 27, 379-399 https://doi.org/10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2
  12. Ramage, C.S., 1971, Monsoon Meteorology. Academic Press, San Diego, USA, 296 p.
  13. Randall, DA, Hu, Q., XU, K.M., and Krueger, S.K., 1994, Radiative-convective disequilibriurn. Atmospheric Research, 31, 315-327 https://doi.org/10.1016/0169-8095(94)90006-X
  14. Rossow, WB. and Schiffer, R.A., 1991, ISCCP Cloud Data Products. Bulletin of the American Meteorological Society, 72, 2-20
  15. Rossow, WB., Walker, A.W, and Garder, L.C., 1993, Comparison of ISCCP and ISCCP and Other Cloud Amouts. Journal of Climate, 6, 2394-2418 https://doi.org/10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO;2
  16. Shi, L. and Smith, EA, 1992, Surface forcing of the infrared cooling profile over the Tibetan Plateau. Part II: Cooling rate variation over large scale plateau domain during summer monsoon transition. Journal of Atmospheric Science, 49, 823-844 https://doi.org/10.1175/1520-0469(1992)049<0823:SFOTIC>2.0.CO;2
  17. Slingo, A. and Sling, J., 1988, The response of a general circulation model to cloud longwave radiation forcing I: Introduction and initial experiments. The Quarterly Journal of the Royal Meteorological Society, 114, 1027- 1062 https://doi.org/10.1002/qj.49711448209
  18. Smith, EA and Shi, L., 1992, Surface forcing of the infrared cooling profile over the Tibetan Plateau. Part I: Influence of relative longwave radiative forcing at high latitude. Journal of Atmospheric Science, 49, 805-822 https://doi.org/10.1175/1520-0469(1992)049<0805:SFOTIC>2.0.CO;2
  19. Sohn, B.J., 1999, Cloud-Induced Infrared Radiative Heating and Its Implications for Large Scale Tropical Circulation. Journal of Atmospheric Science, 56, 2657-2672 https://doi.org/10.1175/1520-0469(1999)056<2657:CIIRHA>2.0.CO;2
  20. Sohn, B.J. and Bennartz, R., 2008, Contribution of water vapor to observational estimates of longwave cloud radiative forcing. Journal of Geophysical Research, 113, D20107 https://doi.org/10.1029/2008JD010053
  21. Stephens, GL., 1978a, Radiation profiles in extended water clouds. I: Theory. Journal of Atmospheric Science, 35, 2111-2122 https://doi.org/10.1175/1520-0469(1978)035<2111:RPIEWC>2.0.CO;2
  22. Stephens, GL., 1978b, Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes. Journal of Atmospheric Science, 35, 2123-2132 https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2
  23. Yanai, M. and Li, C., 1994, Mechanism of heating and the boundary layer over the Tibetan Plateau. Monthly Weather Review, 122, 305-323 https://doi.org/10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2
  24. Zhang, C. and Chou, M.D., 1999, Variability of water vapor, Infrared radiative cooling, and atmospheric instability for deep convection in the equatorial Western Pacific. Journal of Atmospheric Science, 56, 711-723 https://doi.org/10.1175/1520-0469(1999)056<0711:VOWVIR>2.0.CO;2

피인용 문헌

  1. Relationship of South China Sea summer monsoon with ENSO vol.24, pp.6, 2015, https://doi.org/10.5322/JESI.2015.24.6.827