폴리페닐렌에테르계 고분자 기판 소재의 유전특성에 대한 가교제 및 난연제의 영향

Effects of Crosslinking Agent and Flame Retardant on the Dielectric Properties of Poly(phenylene ether)-based Polymer Substrate Material

  • 김동국 (한양대학교 응용화학과) ;
  • 박성대 (한양대학교 응용화학과) ;
  • 유명재 (전자부품연구원 전자소재패키징연구센터) ;
  • 이우성 (전자부품연구원 전자소재패키징연구센터) ;
  • 강남기 (전자부품연구원 전자소재패키징연구센터) ;
  • 임진규 (한양대학교 응용화학과) ;
  • 경진범 (한양대학교 응용화학과)
  • Kim, Dong-Kook (Department of Chemistry & Applied Chemistry, Hanyang University) ;
  • Park, Seong-Dae (Department of Chemistry & Applied Chemistry, Hanyang University) ;
  • Yoo, Myong-Jae (Korea Electronics Technology Institute) ;
  • Lee, Woo-Sung (Korea Electronics Technology Institute) ;
  • Kang, Nam-Kee (Korea Electronics Technology Institute) ;
  • Lim, Jin-Kyu (Department of Chemistry & Applied Chemistry, Hanyang University) ;
  • Kyoung, Jin-Bum (Department of Chemistry & Applied Chemistry, Hanyang University)
  • 발행 : 2009.01.25

초록

폴리페닐렌에테르[PPE, poly(phenylene ether)]를 기저수지로 사용하고, 가교제로 N,N'-m-phenylene-dimaleimide(PDMI), 난연제로 decabromodiphenylethane을 첨가하여 고분자 기판을 제작하였으며, 가교제와 난연제가 기판소재의 유전특성 등 물리적 특성에 미치는 영향을 고찰하였다. 개시제의 유무에 따른 PDMI의 열경화 특성을 DSC를 이용하여 분석하였으며, 이를 바탕으로 PPE-PDMI 테스트 조성을 설계하였다. 복합물 시트를 필름 코터로 성형한 후, 진공가압적층하여 테스트 기판을 제작하고, FDMI와 난연제의 함량에 따른 유전율, 유전손실, peel 강도, 납 내열성 및 난연성을 평가하였다. 유전율과 유전손실은 PDMI와 난연제의 함량에 따라 대체로 증가하는 경향을 나타내었으나, 납 내열성과 난연성은 개선된 결과를 나타내었다. Peel 강도는 PDMI가 10 wt% 이상 첨가되면 1 kN/m 이상의 높은 값을 나타내었지만, 난연제의 첨가량에 따라서는 소폭 감소하는 경향을 보였다. Gel content 측정결과로부터, PPE-PDMI의 반응 메카니즘은 semi-IPN 구조의 형성보다는 PPE와 PDMI의 crosslinking에 의한 망상구조 형성에 더 가까운 것으로 판단되었다. 최종적으로 1 GHz에서 유전율이 2.52$\sim$2.65, 유전손실이 0.002 미만으로 작은 고주파 대역용 고분자 복합체 기판소재를 얻을 수 있었다.

Polymer substrates were fabricated by using poly (phenylene ether) as a base resin, N,N'-m-phenylenedimaleimide (PDMI) as a crosslinking agent and decabromodiphenylethane as a flame retardant. The effects of crosslinking agent and flame retardant on physical properties such as dielectric property of the substrate were investigated. Thermal curing feature of PDMI with or without an initiator was analyzed by DSC, and then, PPE-PDMI test compositions were designed based on this result. Composite sheets were cast by film coater, laminated under vacuum and pressure, and then, the changes of dielectric constant, dielectric loss, peel strength, solder heat resistance and inflammability according to increasing amount of PDMI and flame retardant were evaluated, Dielectric constant and dielectric loss showed increasing trend with increasing amount of PDMI and flame retardant, but solder heat resistance and inflammability were improved. Peel strength was obtained higher than 1 kN/m when PDMI above 10 wt% was added, but slightly decreased as the amount of flame retardant increased. From the measured gel contents, the reaction mechanism of PPE-PDMI system was deduced to the formation of network structure by crosslinking PDMI with PPE rather than the formation of semi-IPN structure. In conclusion, the polymer composite substrate materials with dielectric constant of 2.52$\sim$2.65 and dielectric loss below 0.002 at 1 GHz were obtained and they will be proper for high frequency applications.

키워드

참고문헌

  1. TDK, Electronic Monthly, 7 (1999)
  2. F. Miyashiro and S. Wakabayashi, Electronics Materials toward Ubiquitous Network Age, CMCbooks, Tokyo, 2003
  3. New Trends of Polymers for Electronic Components IV (Japanese), ST-TECHNO, Yokohama, 2005
  4. T. Ito, K. Ichinomiya, S. Asami, and T. Yamada, Japanese Patent 238761 (2003)
  5. Y. Satsuu, S. Amo, A. Takahishi, N. Watabe, M. Unno, T. Fujieda, H. Akaboshi, and A. Nagai, Japanese Patent 041966 (2005)
  6. K. Kaneko, T. Hirose, K. Goto, and A. Hasegawa, Japanese Patent 045318 (2006)
  7. S. Sase, Y. Mizuno, D. Fujimoto, and M. Nomoto, J. Network Polymer(Japanese), 22, 150 (2001)
  8. S. Sase, Y. Mizuno, D. Fujimoto, and M. Nomoto, J. Network Polymer(Japanese), 22, 192 (2001)
  9. S. Sase, Y. Mizuno, D. Fujimoto, N. Takano, T. Iijima, H. Negishi, and T. Sugimura, Proc. of IPC Printed Circuits Expo 2002, S05-2-1 (2002)
  10. D. Fujimoto, Y. Mizuno, N. Takano, S. Sase, H. Negishi, and T. Sugimura, Proc. of IEEE Polytronic 2002 Conference, p.114 (2002)
  11. Y. Mizuno, D. Fujimoto, N. Takano, S. Sase, T. Iijima, H. Negishi, and T. Sugimura, Proc. of the 38th IMAPS Nordic Conference, p.35 (2001)
  12. D. K. Kim, S. D. Park, W. S. Lee, M. J. Yoo, S. H. Park, J. K. Lim, and J. B. Kyoung, Polymer(Korea), 31, 474 (2007)
  13. P. R. Dluzneski, Rubber Chemistry and Technology, 74, 451 (2001) https://doi.org/10.5254/1.3547647
  14. Y. D. Kim and S. C. Kim, Polymer(Korea), 19, 75 (1995)
  15. Y. S. Kim, H. S. Min, and S. C. Kim, Macromol. Res., 10, 60 (2002) https://doi.org/10.1007/BF03218291
  16. H. Mitomo, A. Kaneda, T. M. Quynh, N. Nagasawa, and F. Yoshii, Polymer, 46, 4695 (2005) https://doi.org/10.1016/j.polymer.2005.03.088
  17. J. Xu, S. Bhattacharya, K. Moon, J. Lu, B. Englert, and C. P. Wong, Proc. of the 56th Electronic Components and Technology Conference, p.1520 (2006).