Melting Behavior of Uni-Axially Deformed Polyethylenes Containing Comonomers as Studied by in-situ Small and Wide Angle X-ray Scattering

실시간 소각 밑 광각 X-선 산란을 이용한 일축 변형된 공단량체 함유 폴리에틸렌의 용융 거동

  • Cho, Tai-Yon (Department of Advanced Materials, Hannam University) ;
  • Jeon, Hye-Jin (Department of Advanced Materials, Hannam University) ;
  • Ryu, Seok-Gn (Department of Advanced Materials, Hannam University) ;
  • Song, Hyun-Hoon (Department of Advanced Materials, Hannam University)
  • 조태연 (한남대학교 신소재공학과) ;
  • 전혜진 (한남대학교 신소재공학과) ;
  • 유석근 (한남대학교 신소재공학과) ;
  • 송현훈 (한남대학교 신소재공학과)
  • Published : 2009.03.25

Abstract

Structural rearrangements of uni-axially deformed polyethylenes containing 1-octene comonomer and HDPE upon heating were investigated by time-resolved small and wide angle X-ray scattering techniques. During heating, structural changes including crystal transformation and lamellar rearrangement noted were very different depending on the comonomer contents. At low comonomer content below 2 wt%, inverse martensitic transformation of crystal lattice from monoclinic to orthorhombic cell and the rearrangement of broken lamellar units into more ordered and perfect lamellar stacks were noted with the temperature increase. At high contents above 9.5 wt%, however, polyethylene copolymers showed neither the crystal transformation nor lamellar rearrangement that can be attributed to low crystallinity and high content of branch units.

일축인장에 의하여 변형핀 1-옥텐 공단량체를 함유하는 폴리에틸렌과 고밀도 폴리에틸렌을 대상으로 이들의 온도 상승에 따른 구조 이완 거동을 방사광 가속기를 이용한 실시간 광각 및 소각 X-선 산란법으로 연구하였다. 일축 변형된 폴리에틸렌은 온도가 상승함에 따라 결정의 전이, 부서진 라멜라의 재배열 등 구조적 변화거동이 수반 되었으며 이는 공단량체의 합량에 따라 매우 다르게 나타났다. 공단량체 함량이 2 wt% 이하인 폴리에틸렌의 경우 일축 변형 과정에서 마르텐사이트 전이에 의해 생성된 monoclinic 격자가 온도 상승에 따라 orthorhombic 결정격자로 재전이되고 부서진 라멜라간 재배열 거동을 보였으나 9.5 wt%의 고함량에서는 라멜라의 재배열 거동이 관찰되지 않았으며 결정 격자의 전이 거동도 관찰되지 않았다.

Keywords

References

  1. G. Capaccio and I. M. Ward, J. Polym. Sci., Polym. Phys. Ed., 22, 475 (1984) https://doi.org/10.1002/pol.1984.180220310
  2. M. A. Kennedy, A. J. Peacock, M. D. Failla, J. C. Lucas, and L. Mandelkern, Macromolecules, 28, 1407 (1995) https://doi.org/10.1021/ma00109a012
  3. B. Goderis, H. Reynaers, and M. H. J. Koch, Macromolecules, 35, 5840 (2002) https://doi.org/10.1021/ma011749c
  4. X. Lu, X. Wang, and N. Brown, J. Mater. Sci., 23, 643 (1988) https://doi.org/10.1007/BF01174699
  5. Z. Zhou and N. Brown, Polymer, 35, 3619 (1994) https://doi.org/10.1016/0032-3861(94)90537-1
  6. A. Lustiger and R. L. Markham, Polymer, 24, 1647 (1983) https://doi.org/10.1016/0032-3861(83)90187-8
  7. R. A. Bubeck and H. M. Baker, Polymer, 23, 1680 (1982) https://doi.org/10.1016/0032-3861(82)90193-8
  8. R. G. Alamo, B. D. Viers, and L. Mandelkern, Macromolecules, 26, 5740 (1993) https://doi.org/10.1021/ma00073a031
  9. P. B. Bowden and R. J. Young, J. Mater. Sci., 9, 2034 (1974) https://doi.org/10.1007/BF00540553
  10. J. M. Handin, Plastic Deformation of Amorphows and Semicrystalline Materials, B. Escaig and C. G' Sell, Editors, pp 291-311, 1982
  11. R. J. Young, P. B. Bowden, J. M. Ritchie, and J. G. Rider, J. Mater. Sci., 8, 23 (1973) https://doi.org/10.1007/BF00755579
  12. A. Keller and J. G. Rider, J. Mater. Sci., 1, 389 (1966) https://doi.org/10.1007/BF00549938
  13. T. Hinton and J. G. Rider, J. Appl. Phys., 39, 4932 (1968) https://doi.org/10.1063/1.1655889
  14. L. A. Simpson and T. Hinton, J. Mater. Sci., 6, 558 (1971) https://doi.org/10.1007/BF00550310
  15. D. Shinozabi and G. W. Groves, J. Mater. Sci., 8, 1012 (1973) https://doi.org/10.1007/BF00756633
  16. J. J. Point, G. A. Homes, D. Gezovich, and A. Keller, J. Mater. Sci., 4, 908 (1969) https://doi.org/10.1007/BF00549783
  17. D. P. Pope and A. Keller, J. Mater. Sci., 9, 920 (1974) https://doi.org/10.1007/BF00570384
  18. D. P. Pope and A. Keller, J. Polym. Sci., Polym. Phys. Ed., 14, 821 (1976) https://doi.org/10.1002/pol.1976.180140505
  19. D. P. Pope and A. Keller, J. Mater. Sci., 12, 1105 (1977) https://doi.org/10.1007/BF02426846
  20. L. G. Shadrake and F. Guiu, Phil. Mag., 34, 565 (1976) https://doi.org/10.1080/14786437608223794
  21. L. G. Shadrake and F. Guiu, Phil. Mag., 39, 785 (1979) https://doi.org/10.1080/01418617908239306
  22. T.-Y. Cho, E. J. Shin, W. Jeong, B. Heck, R. Graf, G. Strobl, H. W. Spiess, and D. Y. Yoon, Macromol. Rapid Commun., 27, 322 (2006) https://doi.org/10.1002/marc.200500831
  23. R. Adhikari, R. Godehardt, and W. Lebek, J. Appl. Polym. Sci., 103, 1887 (2007) https://doi.org/10.1002/app.25405
  24. Z. Bartczak and E. Lezak, Polymer, 46, 6050 (2005) https://doi.org/10.1016/j.polymer.2005.04.092
  25. H. H. Song, M. Ree, D. Q. Wu, B. Chu, M. Satkowski, R. Stein, and J. C. Phillips, Macromolecules, 23, 2380 (1990) https://doi.org/10.1021/ma00210a040
  26. H. H. Song, D. Q. Wu, M. Ree, R. S. Stein, J. C. Phillips, A. LeGrand, and B. Chu, Macromolecules, 21, 1180 (1988) https://doi.org/10.1021/ma00182a057
  27. M. Ree, T. Kyu, and R. S. Stein, J. Polym. Sci., Polym. Phys. Ed., 25, 105 (1987) https://doi.org/10.1002/polb.1987.090250108
  28. R. H. Pierce Jr., J. P. Tordella, and W. M. D. Bryant, J. Am. Chem. Soc., 74, 282 (1952)
  29. G. Natta, Makromol. Chem., 16, 213 (1955) https://doi.org/10.1002/macp.1955.020160124
  30. E. R. Waiter and F. P. Reding, J. Polym. Sci., 21, 557 (1956) https://doi.org/10.1002/pol.1956.120219923
  31. W. R. Slichter, J. Polym. Sci., 21, 141 (1956) https://doi.org/10.1002/pol.1956.120219713
  32. P. W. Teare and D. R. Holmes, J. Polym. Sci., 24, 496 (1957) https://doi.org/10.1002/pol.1957.1202410724
  33. A. Turner-Jones, J. Polym. Sci., 62, S53 (1962) https://doi.org/10.1002/pol.1962.1206217421