Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends

Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS 블렌드의 형태학, 열적 및 기계적 특성

  • Kang, Kyoung-Soo (School of Display and Chemical Engineering, Yeungnam University) ;
  • Kim, Bong-Shik (School of Display and Chemical Engineering, Yeungnam University) ;
  • Jang, Woo-Yeul (School of Display and Chemical Engineering, Yeungnam University) ;
  • Shin, Boo-Young (School of Display and Chemical Engineering, Yeungnam University)
  • 강경수 (영남대학교 디스플레이화학공학부) ;
  • 김봉식 (영남대학교 디스플레이화학공학부) ;
  • 장우열 (영남대학교 디스플레이화학공학부) ;
  • 신부영 (영남대학교 디스플레이화학공학부)
  • Published : 2009.03.25

Abstract

The effects of chemically modified thermoplastic starch (CMPS) on the morphology, thermal and mechanical properties of the blends of poly (lactic acid)(PLA) and poly(butylene adipate-co-terephthalate)(PBAT) were studied. Blends of PLA/PBAT with the CMPS contents of 10, 20 and 30 wt% on the basis of PLA/PBAT weight were prepared by a twin screw extruder. The morphology, thermal and mechanical properties of the blends were examined by using scanning electron microscope (SEM), differential scanning calorimeter (DSC) and a tensile tester. The DSC study revealed that PLA/PBAT blends are thermodynamically immiscible, while the compatibility was much improved by addition of the CMPS.

본 연구는 화학적으로 개질된 열가소성 전분(chemically modified thermoplastic starch(CMPS))과 poly(lactic acid)(PLA)와 poly(butylene adipate-co-terephthalate)(PBAT) 블렌드의 형태학, 열적 및 기계적 특성에 미치는 영향에 대해서 연구하였다. PLA/PBAT 블렌드에 CMPS를 이 블렌드의 중량기준으로 10, 20, 30 wt%를 첨가하여 이축압출기로 가공하였다. PLA/PBAT/CMPS 블렌드에서 PLA의 유리전이온도($T_g$)는 CMPS 함량이 증가하여도 큰 변화를 나타내지 않았지만, CMPS의 첨가에 의해 PLA상과 PBAT상 사이의 계면상태가 좋아지는 상용성 있는 형태학을 보여주었다.

Keywords

References

  1. D. Carlson, P. Dubois, and R. Narayan, Polym. Eng. Sci., 38, 311 (1998) https://doi.org/10.1002/pen.10192
  2. R. Narayan, ACM Symphosium Ser., 939 (2006)
  3. M. S. Reeve, S. P. McCarthy, M. J. Downey, and R. A. Gross, Macromolecules, 27, 825 (1994) https://doi.org/10.1021/ma00081a030
  4. W. M. Stevels, M. K, Ankone, P. J. Dijkstra, and J. Feijen, Macromol. Chem. Phys., 196, 3687 (1995) https://doi.org/10.1002/macp.1995.021961121
  5. H. Younes and D. Cohn, Eur. Polym. J., 24, 765 (1988) https://doi.org/10.1016/0014-3057(88)90013-4
  6. A. M. Gairia, V. dave, R. A. Gross, and S. P. Mc-Carthy, Polymer, 37, 437 (1996) https://doi.org/10.1016/0032-3861(96)82913-2
  7. L. Zhang, C. Xiong, and X. Deng, J. Appl. Polym. Sci., 56, 103 (1995) https://doi.org/10.1002/app.1995.070560114
  8. A. M. Gajria, V. Dave, R. A. Gross, and S. P. McCarthy, Polymer, 37, 437 (1996) https://doi.org/10.1016/0032-3861(96)82913-2
  9. A. J. Nijienhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, Polymer, 37, 5849 (1996) https://doi.org/10.1016/S0032-3861(96)00455-7
  10. L. Zhang, S. H. Goh, and S. Y. Lee, Polymer, 39, 4841 (1998) https://doi.org/10.1016/S0032-3861(97)10167-7
  11. W. S. Kim, I. H. Kim, S. C. Kang, T. Mori, Y. Tsuda, and K. R. Ha, Polymer(Korea), 25, 521 (2001)
  12. C. W. Lee, H. Kim, K. H. Song, and S. I. Moon, Polymer (Korea), 26, 174 (2002)
  13. J. L. Espareo, I. Rashkov, S. M. Li, N. Manolova, and M. Vert, Macromolecules, 29, 57 (1996) https://doi.org/10.1021/ma950531l
  14. Y. J. Du, P. J. Lemstra, A. J. Nijenhuis, H. A. M. Aert, and C. Bastiaansen, Macromolecules, 28, 2124 (1993) https://doi.org/10.1021/ma00111a004
  15. D. W. Grijpma, R. D. A. Van Hofslot, H. Super, A. J. Nijenhuis, and A. J. Pennings, Polym. Eng. Sci., 34, 1674 (1994) https://doi.org/10.1002/pen.760342205
  16. C. S. Yoon and D. S. Ji, Fibers and Polymers, 4, 59 (2003) https://doi.org/10.1007/BF02875438
  17. M. Shibata, Y. Inoue, and M. Miyoshi, Polymer, 47, 3557 (2006) https://doi.org/10.1016/j.polymer.2006.03.065
  18. S. Lee and J. W. Lee, Korea-Australia Rheology Journal, 17, 71 (2005)
  19. A. Bhatia, R. K. Gupta, S. N. Bhattacharya, and H. J. Choi, Korea-Australia Rheology Journal, 19, 125 (2007)
  20. R. Narayan, S. Blakrishnan, Y. Nabar, B. Y. Shin, P. Dubois, and J. M. Raquez, U.S. Patent 7,153,354 (2006)
  21. B. Y. Shin, G. S. Jo, K. S. Kang, T. J. Lee, and B. S. Kim, Macromol. Res., 15, 291 (2007) https://doi.org/10.1007/BF03218790
  22. B. Y. Shin, R. Narayan, S. I. Lee, and T. J. LEE, Polym. Eng. Sci., 48, 2126 (2008) https://doi.org/10.1002/pen.21123
  23. J.-M. Raquez, Y. Nabar, R. Narayan, and P. Dubois, Polym. Eng. Sci., 48, 1747 (2008) https://doi.org/10.1002/pen.21136
  24. J. W. Park and S. S. Im, Polym. Eng. Sci., 40, 2539 (1996) https://doi.org/10.1002/pen.11384
  25. H. Wang, X. Sun, and P. Seib, J. Appl. Polym. Sci., 90, 3683 (2003) https://doi.org/10.1002/app.13001
  26. O. H. Nam, N. Ninomiya, A. Fujimori, and T. Masuko, Polym. Eng. Sci., 51, 39 (2005)