Preparation and Characterization of Sponge Using Demineralized Bone Particle

탈미네랄화된 골분을 이용한 스폰지의 제조 및 특성 분석

  • Jang, Ji-Wook (Polymer Fusion Research Center, Chonbuk National University) ;
  • Baek, Mi-Ock (Polymer Fusion Research Center, Chonbuk National University) ;
  • Kim, Soon-Hee (Polymer Fusion Research Center, Chonbuk National University) ;
  • Choi, Jin-Hee (Polymer Fusion Research Center, Chonbuk National University) ;
  • Yang, Jae-Chan (Polymer Fusion Research Center, Chonbuk National University) ;
  • Hong, Hyun-Hye (Polymer Fusion Research Center, Chonbuk National University) ;
  • Hong, Hee-Kyung (Polymer Fusion Research Center, Chonbuk National University) ;
  • Rhee, John-M. (Polymer Fusion Research Center, Chonbuk National University) ;
  • Min, Byoung-Hyun (Cell Therapy Center, School of Medicine, Ajou University) ;
  • Khang, Gil-Son (Polymer Fusion Research Center, Chonbuk National University)
  • 장지욱 (전북대학교 고분자 융합소재연구센터) ;
  • 백미옥 (전북대학교 고분자 융합소재연구센터) ;
  • 김순희 (전북대학교 고분자 융합소재연구센터) ;
  • 최진희 (전북대학교 고분자 융합소재연구센터) ;
  • 양재찬 (전북대학교 고분자 융합소재연구센터) ;
  • 홍현혜 (전북대학교 고분자 융합소재연구센터) ;
  • 홍희경 (전북대학교 고분자 융합소재연구센터) ;
  • 이종문 (전북대학교 고분자 융합소재연구센터) ;
  • 민병현 (아주대학교 의과대학 세포치료센터) ;
  • 강길선 (전북대학교 고분자 융합소재연구센터)
  • Published : 2009.03.25

Abstract

Demineralized boneparticle (DBP) has been widely used as and a powerful promoter of new bone growth. In this study, DBP sponges were chemically crosslinked and characterized for the potential application of tissue engineered scaffolds. The DBP sponges prepared by crosslinking with EDC. 0.1, 0.2 or 0.3% pepsin was applied to DBP dissolved in 3% (v/v) acetic acid aqueous solution for 48 hrs. The prepared sponges were crosslinked by 1, 5, 10, 50 or 100 mM of EDC solution concentration and then were lyophilized. The DBP sponges were characterized by SEM, FT-IR and DSC and analyzed in terms of their porosity and water absorption ability. The cellular viability and proliferation were assayed by MTT assay. Our investigation revealed that 0.2$\sim$0.3% of pepsin and 50$\sim$100 mM of EDC produced DBP sponges with good physical characteristics. In conclusion, DBP sponge prepared under these conditions is potentially useful for the applications of tissue construction.

탈미네랄화된 골분(DBP)은 생체활성 천연재료로서 골을 형성시키는 유도인자로 널리 사용되고 있다. 본 연구에서는 DBP 스폰지를 펩신의 농도와 가교제의 농도에 따라 그 특성을 분석함으로써 조직공학적 지지체로의 응용 가능성을 확인하였다. DBP를 3% 아세트산 용액에 48시간동안 용해시킬 시 0.1, 0.2 및 0.3% 펩신을 첨가하였고, 가교시 1, 5, 10, 50 및 100 mM의 EDC를 적용하였다. 이를 전자주사현미경, 시차주사열량계, 적외선 분광기, 다공도 및 흡수성 실험을 통해 특성분석하였으며 세포의 증식률은 MTT 분석으로 확인하였다. 이러한 결과를 통해 펩신의 농도로는 0.2$\sim$0.3%가, 가교제의 농도는 50$\sim$100 mM에서 물리화학적 특성이 우수한 것으로 판단되었고, 이러한 조건으로 제조된 DBP 스폰지는 조직 공학적 지지체로 유용하게 응용될 수 있을 것이다.

Keywords

References

  1. G. Khang, M. S. Kim, B. Y. Min, I. W. Lee, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 376 (2006)
  2. Y. K. Ko, S. H. Kim, J. S. Jeong, J. S. Park, J. Y. Lim, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 505 (2007)
  3. G. Khang, M. S. Kim, S. H. Cho, I. W. Lee, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 1, 9 (2004)
  4. Y. K. Ko, S. H. Hee, H. J. Ha, M. S. Kim, C. W. Han, J. M. Rhee, Y. S. Son, H. B. Lee, and G. Kang, Tissue Eng. Regen. Med., 4, 67 (2007)
  5. G. Khang, S. J. Lee, and H. B. Lee, 'Polymer-cell interaction', in Tissue Engineering: Concepts and Application, 2nd Eds., J. J. Yoon, and I. Lee, Editors, Korea Med. Pub. Co., Seoul, p. 297 (2002)
  6. S. H. Kim, S. H. Kim, and Y. H. Kim, Polym. Sci. Tech., 16, 468 (2005)
  7. M. O. Baek, S. J. Won, S. H. Kim, H. W. Roh, N. R. Lee, M. S. Kim, G. H. Ryu, Y. H. Cho, S. J. Lee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 4, 600 (2007) https://doi.org/10.1002/term.273
  8. H. W. Shin, S. H. Kim, J. W. Jang, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 194 (2004)
  9. S. H. Kim, S. J. Yoon, J. W. Jang, M. S. Kim, G. Khang, and H. B. Lee, Polymer(Korea), 30, 14 (2006)
  10. I. K. Park, S. H. Oh, and J. H. Lee, Tissue Eng. Regen. Med., 1, 164 (2004)
  11. J. W. Jang, B. Lee, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2004)
  12. S. J. Yoon, K. S. Park, B. S. Choi, G. Khang, M. S. Kim, J. M. Lee, and H. B. Lee, Key Eng. Materials, 342-343, 161 (2007) https://doi.org/10.4028/www.scientific.net/KEM.342-343.161
  13. B. S. Choi, S. H. Kim, S. J. Yun, H. H. Ha, M. S. Kim, Y. I. Yang, Y. S. Son, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 295 (2006)
  14. W. Huang, C. Brian, W. Isabella, R. George, I. Jenji, W. Beniamin, Y. Dean, and M. Timothy, Experimental Cell Res., 299, 325 (2004) https://doi.org/10.1016/j.yexcr.2004.04.051
  15. E. J. Kim, C. S. Park, C. S. Park, M. S. Kim, S. H. Cho, J. M. Rhee, H. B. Lee, and G. Khang, Polymer(Korea), 28, 218 (2004)
  16. K. S. Kim, M. H. Cho, H. H. Ahn, S. B. Song, S. J. Seo, M. S. Kim, B. Lee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 4, 168 (2007)
  17. S. K. Kim, K. D. Hong, S. H. Ko, M. S. Kim, G. Khang, I. W. Lee, C. W. Han, H. K. Lee, and H. B. Lee, Tissue Eng. Regen. Med., 2, 130 (2005)
  18. J. F. Sugiura, H. Kitoh, and N. Ishiguro, BBRC, 316, 233 (2004) https://doi.org/10.1016/j.bbrc.2004.02.038
  19. M. R. Urist, Science, 150, 893 (1965) https://doi.org/10.1126/science.150.3698.893
  20. J. R. Mauney, C. Jaquiery, V. Volloch, M. Hebererb, I. Martinb, and D. L. Kaplan, Biomaterials, 26, 3173 (2005) https://doi.org/10.1016/j.biomaterials.2004.08.020
  21. Y. Chang, C. C. Tsail, H. C. Lian, and H. W. Sung, Biomaterials, 23, 2447 (2002) https://doi.org/10.1016/S0142-9612(01)00379-9
  22. S. N. Park, H. J. Lee, K. H. Lee, and H. Suh, Biomaterials, 24, 1631 (2003) https://doi.org/10.1016/S0142-9612(02)00550-1
  23. V. Charulatha and A. Rajaram, Biomaterials, 24, 759 (2003) https://doi.org/10.1016/S0142-9612(02)00412-X
  24. M. Matsuoka, B. Wispriyono, and H. Igisu, Biochem. Pharm., 59, 1573 (2000) https://doi.org/10.1016/S0006-2952(00)00280-X
  25. Y. Zhang, W. Liu, G. Li, B. Shi, Y. Miao, and X. Wub, Food Chem., 103, 906 (2007) https://doi.org/10.1016/j.foodchem.2006.09.053
  26. S. Nalinanon, S. Benjakul, W. Visessanguan, and H. Kishimura, Food Chem., 104, 593 (2007) https://doi.org/10.1016/j.foodchem.2006.12.035
  27. Z. Chen, X. Mo, C. He, and H. Wang, Carbohydrate Polym., 72, 410 (2008) https://doi.org/10.1016/j.carbpol.2007.09.018