Fabrication of Multicomponent Protein Microarrays with Microfluidic Devices of Poly(dimethylsiloxane)

  • Jeon, Se-Hoon (Division of Energy Systems Research, Ajou University) ;
  • Kim, Ui-Seong (Division of Energy Systems Research, Ajou University) ;
  • Jeon, Won-Jin (Division of Energy Systems Research, Ajou University) ;
  • Shin, Chee-Burm (Division of Energy Systems Research, Ajou University) ;
  • Hong, Su-Rin (School of Chemical and Biological Engineering, Seoul National University) ;
  • Choi, In-Hee (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Su-Seung (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yi, Jong-Heop (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2009.03.25

Abstract

Recently, the multi-screening of target materials has been made possible by the development of the surface plasmon resonance (SPR) imaging method. To adapt this method to biochemical analysis, the multi-patterning technology of protein microarrays is required. Among the different methods of fabricating protein microarrays, the microfluidic platform was selected due to its various advantages over other techniques. Microfluidic devices were designed and fabricated with polydimethylsiloxane (PDMS) by the replica molding method. These devices were designed to operate using only capillary force, without the need for additional flow control equipment. With these devices, multiple protein-patterned sensor surfaces were made, to support the two-dimensional detection of various protein-protein interactions with SPR. The fabrication technique of protein microarrays can be applied not only to SPR imaging, but also to other biochemical analyses.

Keywords

References

  1. J. E. Anderson, L. L. Hansen, F. C. Moorenb, M. Post, H. Hugc, A. Zuse, and M. Los, Drug Resist. Update, 9, 198 (2006) https://doi.org/10.1016/j.drup.2006.08.001
  2. E. P. Diamandis and T. K. Christopoulos, Newyork, NY, Academic Press, New York, NY, 2006
  3. J. Homola, S. S. Yee, and G. Gauglitz, Sensor Actuat. BChem., 54, 3 (1999) https://doi.org/10.1016/S0925-4005(98)00321-9
  4. R. J. Green, R. A. Frazier, K. M. Shakeshe, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Biomaterials, 21, 1823 (2000) https://doi.org/10.1016/S0142-9612(00)00077-6
  5. Y. Iwasaki, T. Tobita, T. Horiuchi, and M. Seyama, NTT Technical Review, 4, 21 (2006)
  6. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. V. Duyne, Nanomedicine, 1, 219 (2006) https://doi.org/10.2217/17435889.1.2.219
  7. E. Verpoorte, Electrophoresis, 23, 677 (2002) https://doi.org/10.1002/1522-2683(200203)23:5<677::AID-ELPS677>3.0.CO;2-8
  8. P. Mitchell, Nat. Biotechnol., 19, 717 (2001) https://doi.org/10.1038/90754
  9. C. Yi, C. Li, S. Ji, and M. Yang, Anal. Chim. Acta, 560, 1 (2006) https://doi.org/10.1016/j.aca.2005.12.037
  10. A. Gerlach, G. Knebel, A. E. Guber, M. Heckele, D. Herrmann, A. Muslija, and Th. Schaller, Microsyst. Technol., 7, 265 (2002) https://doi.org/10.1007/s005420100114
  11. D. D. Cunningham, Analy. Chim. Acta, 429, 1 (2001) https://doi.org/10.1016/S0003-2670(00)01256-3
  12. B. H. Weigl and K. Hedine, American Clinical Laboratory, 21, 8 (2002)
  13. D. R. Reyes, D. Iossifidis, P. Auroux, and A. Manz, Anal. Chem., 74, 2623 (2002) https://doi.org/10.1021/ac0202435
  14. P. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, Anal. Chem., 74, 2637 (2002) https://doi.org/10.1021/ac020239t
  15. N. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics, 2nd Ed., Artech House, Norwood, MA, 2006
  16. J. Berthier and P. Silberzan, Microfluidics for Biotechnology, Artech House, Boston, MA, 2006
  17. A. E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Saile, L. Eichhorn, T. Gietzelt, W. Hoffmann, P. C. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich, and G. Knebel, Chem. Eng. J., 101, 447 (2004) https://doi.org/10.1016/j.cej.2004.01.016
  18. L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. Alonso-Amigoc, and H. Beckerc, Lab Chip, 2, 1 (2002)
  19. C. A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, and A. Errachid, Microelectronic Engineering, 78, 695 (2005) https://doi.org/10.1016/j.mee.2004.12.087
  20. S. Metz, R. Holzer, and P. Renaud, Lab Chip, 1, 29 (2001) https://doi.org/10.1039/b103896f
  21. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem., 70, 4974 (1998) https://doi.org/10.1021/ac980656z
  22. G. Urban, Ed., BioMEMS, Springer, Dordrecht, Netherlands, 2006
  23. A. R. Wheeler, S. Chah, R. J. Whelan, and R. N. Zare, Sensor Actuat. B-Chem., 98, 208 (2004) https://doi.org/10.1016/j.snb.2003.06.004
  24. V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, Anal. Chem., 76, 7257 (2004) https://doi.org/10.1021/ac049318q
  25. M. R. Cookson, F. M. Menzies, P. Manning, C. J. Eggett, D. A. Figlewicz, C. J. McNeil, and P. J. Shaw, Amyotroph Lateral Scler Other Motor Neuron Disord., 3, 75 (2002)
  26. W. Limbut, S. Loyprasert, C. Thammakhet, P. Thavarungkul, A. Tuantranont, P. Asawatreratanakul, C. Limsakul, B. Wongkittisuksa, and P. Kanatharana, Biosens. Bioelectron., 22, 3064 (2007) https://doi.org/10.1016/j.bios.2007.01.001
  27. A. Al-Chalabi and P. N. Leigh, Curr. Opin. Neurol., 13, 397 (2000) https://doi.org/10.1097/00019052-200008000-00006
  28. C. L. Shoesmith and M. J. Strong, Can. Fam. Physician, 52, 1563 (2006)
  29. A. Al-Chalabi and P. N. Leigh, Curr. Opin. Neurol., 13, 397 (2000) https://doi.org/10.1097/00019052-200008000-00006
  30. J. J. Goto, E. B. Gralla, J. S. Valentine, and D. E. Cabelli, J. Biol. Chem., 273, 30104 (1998) https://doi.org/10.1074/jbc.273.46.30104
  31. P. J. Schmidt, C. Kunst, and V. C. Culotta, J. Biol. Chem., 275, 33771 (2000) https://doi.org/10.1074/jbc.M006254200