References
- Carter, N. J. and S. J. Keam. 2007. Trabectedin: A review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs 67: 2257-2276 https://doi.org/10.2165/00003495-200767150-00009
- Carter, R. A., P. S. Worsley, G. Sawers, G. L. Charllis, M. J. Dillworth, K. C. Carson, et al. 2002. The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: Their expression in other genera requires ECF sigma factor RpoI. Mol. Microbiol. 44: 1153-1166 https://doi.org/10.1046/j.1365-2958.2002.02951.x
- Crosa, J. H. and C. T. Walsh. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66: 223-249 https://doi.org/10.1128/MMBR.66.2.223-249.2002
-
Drake, E. J., J. Cao, J. Qu, M. B. Shah, R. M. Straubinger, and A. M. Gulick. 2007. The 1.8
$\AA$ crystal structure of PA2412, an MbtH-like protein from pyoverdine of Pseudomonas aeruginosa. J. Biol. Chem. 282: 20425-20434 https://doi.org/10.1074/jbc.M611833200 - Fischbach, M. A. and C. T. Walsh. 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chem. Rev. 106: 3468-3496 https://doi.org/10.1021/cr0503097
- Gehring, A. M., I. Mori, and C. T. Walsh. 1998. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37: 2648-2659 https://doi.org/10.1021/bi9726584
- Grosso, F., R. L. Jones, G. D. Demetri, I. R. Judson, J.-Y. Blay, A. L. Cesne, et al. 2007. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: A retrospective study. Lancet Oncol. 8: 595-602 https://doi.org/10.1016/S1470-2045(07)70175-4
- Herrero, M., De V. Lorenzo, and K. N. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172: 6557-6567 https://doi.org/10.1128/jb.172.11.6557-6567.1990
- Hu, Y., V. Phelan, L. Ntai, C. M. Farnet, E. Zazopoulos, and B. O. Bachmann. 2007. Benzodiazepine biosynthesis in Streptomyces refuineus. Chem. Biol. 24: 691-701 https://doi.org/10.1016/j.chembiol.2007.05.009
- Hubbard, B. K. and C. T. Walsh. 2003. Vancomycin assembly: Nature's way. Angew. Chem. Int. Ed. 42: 730-765 https://doi.org/10.1002/anie.200390202
- Kappock, T. J. and J. P. Caradonna. 1996. Pterin-dependent amino acid hydroxylases. Chem. Rev. 96: 2659-2756 https://doi.org/10.1021/cr9402034
- Konz, D. and M. A. Marahiel. 1999. How do peptide synthetases generate structural diversity? Chem. Biol. 6: R39-R48 https://doi.org/10.1016/S1074-5521(99)80002-7
- Lautru, S., D. Oves-Costales, J.-L. Pernodet, and G. L. Challis. 2007. MbtH-like protein-mediated cross-talk between nonribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. Microbiology 153: 1405-1412 https://doi.org/10.1099/mic.0.2006/003145-0
- Li, L., W. Deng, J. Song, W. Ding, Q.-F. Zhao, C. Peng, W.-W. Song, G.-L. Tang, and W. Liu. 2008. Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a NRPS system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J. Bacteriol. 190: 251-263 https://doi.org/10.1128/JB.00826-07
- Lin, S., S. G. Van Lanen, and B. Shen. 2008. Characterization of the two-component, FAD-dependent monooxygenase SgcC that requires carrier protein-tethered substrates for the biosynthesis of the enediyne antitumor antibiotic C-1027. J. Am. Chem. Soc. 130: 6616-6623 https://doi.org/10.1021/ja710601d
- de Lorenzo, V., L. Eltis, B. Kessler, and K. N. Timmis. 1993. Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123: 17-24 https://doi.org/10.1016/0378-1119(93)90533-9
- McDaniel, R., S. Ebert-Khosla, D. A. Hopwood, and C. Khosla. 1993. Engineered biosynthesis of novel polyketides. Science 262: 1546-1550 https://doi.org/10.1126/science.8248802
- Mikami, Y., K. Takahashi, K. Yazawa, T. Arai, M. Namikoshi, S. Iwasaki, and S. Okuda. 1985. Biosynthetic studies on saframycin A, a quinone antitumor antibiotic produced by Streptomyces lavendulae. J. Biol. Chem. 260: 344-348
- Nelson, J. T., J. Lee, J. W. Sims, and E. W. Schmidt. 2007. Characterization of SafC, a catechol 4-O-methyltransferase involved in saframycin biosynthesis. Appl. Environ. Microbiol. 73: 3575-3580 https://doi.org/10.1128/AEM.00011-07
- Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. P. Martins dos Santos, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808 https://doi.org/10.1046/j.1462-2920.2002.00366.x
-
Neusser, D., H. Schmidt, J. Spiz
$\grave{e}$ k, J. Novotn$\acute{a}$ , U. Peschke, S. Kaschabeck, P. Tichy, and W. Piepersberg. 1998. The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A. Arch. Microbiol. 169: 322-332 https://doi.org/10.1007/s002030050578 - Quadri, L. E., J. Sello, T. A. Keating, P. H. Weinreb, and C. T. Walsh. 1998. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence conferring siderophore mycobactin. Chem. Biol. 5: 631-645 https://doi.org/10.1016/S1074-5521(98)90291-5
- Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY
-
S
$\acute{a}$ nchez-Ferrer,$\acute{A}$ ., J. N. Rodr$\acute{i}$ guez-L$\acute{o}$ pez, F. Garc$\acute{i}$ a-C$\acute{a}$ novas, and F. Garc$\acute{i}$ a-Carmona. 1995. Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta 1247: 1-11 - Schwarzer, D., R. Finking, and M. A. Marahiel. 2003. Nonribosomal peptides: From gene to products. Nat. Prod. Rep. 20: 275-287 https://doi.org/10.1039/b111145k
- Scott, J. D. and R. M. Williams. 2002. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev. 102: 1669-1730 https://doi.org/10.1021/cr010212u
- Selbitschka, W., S. Niemann, and A. Pühler. 1993. Construction of gene replacement vectors from Gram- bacteria using a genetically modified sacRB gene as a positive selection marker. Appl. Microbiol. Biotechnol. 38: 615-618 https://doi.org/10.1007/BF00182799
- Sieber, S. A. and M. A. Marahiel. 2005. Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chem. Rev. 105: 715-738 https://doi.org/10.1021/cr0301191
- Stegmann, E., C. Rausch, S. Stockert, D. Burkert, and W. Wohlleben. 2006. The small MbtH-like protein encoded by an internal gene of the balhimycin biosynthetic gene cluster is not required for glycopeptide production. FEMS Microbiol. Lett. 262: 85-92 https://doi.org/10.1111/j.1574-6968.2006.00368.x
-
Velasco, A., P. Acebo, A. Gomez, C. Schleissner, P. Rodr
\'{\i} guez, T. Aparicio, et al. 2005. Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: Designing new cytotoxic compounds. Mol. Microbiol. 56:144-154 https://doi.org/10.1111/j.1365-2958.2004.04433.x - Wolpert, M., B. Gust, B. Kammerer, and L. Heide. 2007. Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. Microbiology 153: 1413-1423 https://doi.org/10.1099/mic.0.2006/002998-0
- Zhang, W., B. D. Ames, S.-C. Tsai, and Y. Tang. 2006. Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl. Environ. Microbiol. 72: 2573-2580 https://doi.org/10.1128/AEM.72.4.2573-2580.2006
- Zmijewski, M. J., Jr. M. Mikolajczak, V. Viswanatha, and V. J. Hruby. 1982. Biosynthesis of the antitumor antibiotic naphthyridinomycin. J. Am. Chem. Soc. 104: 4969-4971 https://doi.org/10.1021/ja00382a049
Cited by
- PKS and NRPS release mechanisms vol.27, pp.2, 2009, https://doi.org/10.1039/b912037h
- Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms vol.6, pp.6, 2010, https://doi.org/10.1038/nchembio.365
- Cloning and Elucidation of the FR901464 Gene Cluster Revealing a Complex Acyltransferase-less Polyketide Synthase Using Glycerate as Starter Units vol.133, pp.8, 2011, https://doi.org/10.1021/ja105649g
- Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose vol.92, pp.4, 2009, https://doi.org/10.1007/s00253-011-3347-7
- Meta-omic Characterization of the Marine Invertebrate Microbial Consortium That Produces the Chemotherapeutic Natural Product ET-743 vol.6, pp.11, 2011, https://doi.org/10.1021/cb200244t
- In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O vol.55, pp.1, 2009, https://doi.org/10.1007/s11426-011-4450-4
- Characterization of SfmD as a Heme Peroxidase That Catalyzes the Regioselective Hydroxylation of 3-Methyltyrosine to 3-Hydroxy-5-methyltyrosine in Saframycin A Biosynthesis vol.287, pp.7, 2012, https://doi.org/10.1074/jbc.m111.306316
- Hijacking a hydroxyethyl unit from a central metabolic ketose into a nonribosomal peptide assembly line vol.109, pp.22, 2012, https://doi.org/10.1073/pnas.1204232109
- Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics vol.32, pp.2, 2015, https://doi.org/10.1039/c4np00051j
- Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights vol.34, pp.7, 2009, https://doi.org/10.1039/c7np00010c
- Catalysis of Extracellular Deamination by a FAD‐Linked Oxidoreductase after Prodrug Maturation in the Biosynthesis of Saframycin A vol.129, pp.31, 2017, https://doi.org/10.1002/ange.201704726
- Catalysis of Extracellular Deamination by a FAD‐Linked Oxidoreductase after Prodrug Maturation in the Biosynthesis of Saframycin A vol.56, pp.31, 2009, https://doi.org/10.1002/anie.201704726
- Chemo-enzymatic Total Syntheses of Jorunnamycin A, Saframycin A, and N-Fmoc Saframycin Y3 vol.140, pp.34, 2009, https://doi.org/10.1021/jacs.8b07161
- PokMT1 from the Polyketomycin Biosynthetic Machinery of Streptomyces diastatochromogenes Tü6028 Belongs to the Emerging Family of C-Methyltransferases That Act on CoA-Activated Aromatic Substrat vol.57, pp.6, 2009, https://doi.org/10.1021/acs.biochem.7b01219
- Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-03366-x
- Overexpression and characterization of a thermostable β-agarase producing neoagarotetraose from a marine isolate Microbulbifer sp. AG1 vol.38, pp.2, 2019, https://doi.org/10.1007/s13131-019-1349-y
- Localized production of defence chemicals by intracellular symbionts of Haliclona sponges vol.4, pp.7, 2009, https://doi.org/10.1038/s41564-019-0415-8
- Biosynthetic Pathways to Nonproteinogenic α-Amino Acids vol.120, pp.6, 2020, https://doi.org/10.1021/acs.chemrev.9b00408
- Overexpression and characterization of a novel GH16 β-agarase (Aga1) from Cellulophaga omnivescoria W5C vol.42, pp.11, 2009, https://doi.org/10.1007/s10529-020-02933-x