DOI QR코드

DOI QR Code

Biosynthesis of 3-Hydroxy-5-Methyl-O-Methyltyrosine in the Saframycin/Safracin Biosynthetic Pathway

  • Fu, Cheng-Yu (School of Life Science and Technology, Xi'an Jiaotong University) ;
  • Tang, Man-Cheng (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences) ;
  • Peng, Chao (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences) ;
  • Li, Lei (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences) ;
  • He, Yan-Ling (School of Life Science and Technology, Xi'an Jiaotong University) ;
  • Liu, Wen (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences) ;
  • Tang, Gong-Li (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences)
  • Published : 2009.05.31

Abstract

The biosynthesis study of antibiotics saframycin (SFM) in Streptomyces lavendulae and safracin (SAC) in Pseudomonas fluorescens demonstrated that 3-hydroxy-S-methyl-O-methyltyrosine (3hSmOmTyr), a nonproteinogenic amino acid, is the precursor of the tetrahydroisoquinoline molecular core. In the biosynthetic gene cluster of SAC/SFM, sacD/sfmD encodes a protein with high homology to each other but no sequence similarity to other known enzymes; sacF/sfmM2 and sacG/sfmM3 encode methyltransferases for C-methylation and O-methylation; and sacE/sfinF encodes a small protein with significant sequence similarity to the MbtH-like proteins, which are frequently found in the biosynthetic pathways of non ribosomal peptide antibiotics and siderophores. To address their function, the biosynthetic cassette of 3h5mOmTyr was heterologously expressed in S. coelicolor and P. putida, and an in-frame deletion and complementation in trans were carried out. The results revealed that (i) SfmD catalyzes the hydroxylation of aromatic rings; (ii) sacD/sacF/sacG in the SAC gene cluster and sfmD/sfmM2/sfmM3 in the SFM cluster are sufficient for the biosynthesis of 3h5mOmTyr; and (iii) the mbtH-like gene is not required for the biosynthesis of the 3h5mOmTyr precursor.

Keywords

References

  1. Carter, N. J. and S. J. Keam. 2007. Trabectedin: A review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs 67: 2257-2276 https://doi.org/10.2165/00003495-200767150-00009
  2. Carter, R. A., P. S. Worsley, G. Sawers, G. L. Charllis, M. J. Dillworth, K. C. Carson, et al. 2002. The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: Their expression in other genera requires ECF sigma factor RpoI. Mol. Microbiol. 44: 1153-1166 https://doi.org/10.1046/j.1365-2958.2002.02951.x
  3. Crosa, J. H. and C. T. Walsh. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66: 223-249 https://doi.org/10.1128/MMBR.66.2.223-249.2002
  4. Drake, E. J., J. Cao, J. Qu, M. B. Shah, R. M. Straubinger, and A. M. Gulick. 2007. The 1.8 $\AA$ crystal structure of PA2412, an MbtH-like protein from pyoverdine of Pseudomonas aeruginosa. J. Biol. Chem. 282: 20425-20434 https://doi.org/10.1074/jbc.M611833200
  5. Fischbach, M. A. and C. T. Walsh. 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chem. Rev. 106: 3468-3496 https://doi.org/10.1021/cr0503097
  6. Gehring, A. M., I. Mori, and C. T. Walsh. 1998. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37: 2648-2659 https://doi.org/10.1021/bi9726584
  7. Grosso, F., R. L. Jones, G. D. Demetri, I. R. Judson, J.-Y. Blay, A. L. Cesne, et al. 2007. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: A retrospective study. Lancet Oncol. 8: 595-602 https://doi.org/10.1016/S1470-2045(07)70175-4
  8. Herrero, M., De V. Lorenzo, and K. N. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172: 6557-6567 https://doi.org/10.1128/jb.172.11.6557-6567.1990
  9. Hu, Y., V. Phelan, L. Ntai, C. M. Farnet, E. Zazopoulos, and B. O. Bachmann. 2007. Benzodiazepine biosynthesis in Streptomyces refuineus. Chem. Biol. 24: 691-701 https://doi.org/10.1016/j.chembiol.2007.05.009
  10. Hubbard, B. K. and C. T. Walsh. 2003. Vancomycin assembly: Nature's way. Angew. Chem. Int. Ed. 42: 730-765 https://doi.org/10.1002/anie.200390202
  11. Kappock, T. J. and J. P. Caradonna. 1996. Pterin-dependent amino acid hydroxylases. Chem. Rev. 96: 2659-2756 https://doi.org/10.1021/cr9402034
  12. Konz, D. and M. A. Marahiel. 1999. How do peptide synthetases generate structural diversity? Chem. Biol. 6: R39-R48 https://doi.org/10.1016/S1074-5521(99)80002-7
  13. Lautru, S., D. Oves-Costales, J.-L. Pernodet, and G. L. Challis. 2007. MbtH-like protein-mediated cross-talk between nonribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. Microbiology 153: 1405-1412 https://doi.org/10.1099/mic.0.2006/003145-0
  14. Li, L., W. Deng, J. Song, W. Ding, Q.-F. Zhao, C. Peng, W.-W. Song, G.-L. Tang, and W. Liu. 2008. Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a NRPS system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J. Bacteriol. 190: 251-263 https://doi.org/10.1128/JB.00826-07
  15. Lin, S., S. G. Van Lanen, and B. Shen. 2008. Characterization of the two-component, FAD-dependent monooxygenase SgcC that requires carrier protein-tethered substrates for the biosynthesis of the enediyne antitumor antibiotic C-1027. J. Am. Chem. Soc. 130: 6616-6623 https://doi.org/10.1021/ja710601d
  16. de Lorenzo, V., L. Eltis, B. Kessler, and K. N. Timmis. 1993. Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123: 17-24 https://doi.org/10.1016/0378-1119(93)90533-9
  17. McDaniel, R., S. Ebert-Khosla, D. A. Hopwood, and C. Khosla. 1993. Engineered biosynthesis of novel polyketides. Science 262: 1546-1550 https://doi.org/10.1126/science.8248802
  18. Mikami, Y., K. Takahashi, K. Yazawa, T. Arai, M. Namikoshi, S. Iwasaki, and S. Okuda. 1985. Biosynthetic studies on saframycin A, a quinone antitumor antibiotic produced by Streptomyces lavendulae. J. Biol. Chem. 260: 344-348
  19. Nelson, J. T., J. Lee, J. W. Sims, and E. W. Schmidt. 2007. Characterization of SafC, a catechol 4-O-methyltransferase involved in saframycin biosynthesis. Appl. Environ. Microbiol. 73: 3575-3580 https://doi.org/10.1128/AEM.00011-07
  20. Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. P. Martins dos Santos, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808 https://doi.org/10.1046/j.1462-2920.2002.00366.x
  21. Neusser, D., H. Schmidt, J. Spiz$\grave{e}$k, J. Novotn$\acute{a}$, U. Peschke, S. Kaschabeck, P. Tichy, and W. Piepersberg. 1998. The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A. Arch. Microbiol. 169: 322-332 https://doi.org/10.1007/s002030050578
  22. Quadri, L. E., J. Sello, T. A. Keating, P. H. Weinreb, and C. T. Walsh. 1998. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence conferring siderophore mycobactin. Chem. Biol. 5: 631-645 https://doi.org/10.1016/S1074-5521(98)90291-5
  23. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY
  24. S$\acute{a}$nchez-Ferrer, $\acute{A}$., J. N. Rodr$\acute{i}$guez-L$\acute{o}$pez, F. Garc$\acute{i}$a-C$\acute{a}$novas, and F. Garc$\acute{i}$a-Carmona. 1995. Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta 1247: 1-11
  25. Schwarzer, D., R. Finking, and M. A. Marahiel. 2003. Nonribosomal peptides: From gene to products. Nat. Prod. Rep. 20: 275-287 https://doi.org/10.1039/b111145k
  26. Scott, J. D. and R. M. Williams. 2002. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev. 102: 1669-1730 https://doi.org/10.1021/cr010212u
  27. Selbitschka, W., S. Niemann, and A. Pühler. 1993. Construction of gene replacement vectors from Gram- bacteria using a genetically modified sacRB gene as a positive selection marker. Appl. Microbiol. Biotechnol. 38: 615-618 https://doi.org/10.1007/BF00182799
  28. Sieber, S. A. and M. A. Marahiel. 2005. Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chem. Rev. 105: 715-738 https://doi.org/10.1021/cr0301191
  29. Stegmann, E., C. Rausch, S. Stockert, D. Burkert, and W. Wohlleben. 2006. The small MbtH-like protein encoded by an internal gene of the balhimycin biosynthetic gene cluster is not required for glycopeptide production. FEMS Microbiol. Lett. 262: 85-92 https://doi.org/10.1111/j.1574-6968.2006.00368.x
  30. Velasco, A., P. Acebo, A. Gomez, C. Schleissner, P. Rodr\'{\i}guez, T. Aparicio, et al. 2005. Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: Designing new cytotoxic compounds. Mol. Microbiol. 56:144-154 https://doi.org/10.1111/j.1365-2958.2004.04433.x
  31. Wolpert, M., B. Gust, B. Kammerer, and L. Heide. 2007. Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. Microbiology 153: 1413-1423 https://doi.org/10.1099/mic.0.2006/002998-0
  32. Zhang, W., B. D. Ames, S.-C. Tsai, and Y. Tang. 2006. Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl. Environ. Microbiol. 72: 2573-2580 https://doi.org/10.1128/AEM.72.4.2573-2580.2006
  33. Zmijewski, M. J., Jr. M. Mikolajczak, V. Viswanatha, and V. J. Hruby. 1982. Biosynthesis of the antitumor antibiotic naphthyridinomycin. J. Am. Chem. Soc. 104: 4969-4971 https://doi.org/10.1021/ja00382a049

Cited by

  1. PKS and NRPS release mechanisms vol.27, pp.2, 2009, https://doi.org/10.1039/b912037h
  2. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms vol.6, pp.6, 2010, https://doi.org/10.1038/nchembio.365
  3. Cloning and Elucidation of the FR901464 Gene Cluster Revealing a Complex Acyltransferase-less Polyketide Synthase Using Glycerate as Starter Units vol.133, pp.8, 2011, https://doi.org/10.1021/ja105649g
  4. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose vol.92, pp.4, 2009, https://doi.org/10.1007/s00253-011-3347-7
  5. Meta-omic Characterization of the Marine Invertebrate Microbial Consortium That Produces the Chemotherapeutic Natural Product ET-743 vol.6, pp.11, 2011, https://doi.org/10.1021/cb200244t
  6. In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O vol.55, pp.1, 2009, https://doi.org/10.1007/s11426-011-4450-4
  7. Characterization of SfmD as a Heme Peroxidase That Catalyzes the Regioselective Hydroxylation of 3-Methyltyrosine to 3-Hydroxy-5-methyltyrosine in Saframycin A Biosynthesis vol.287, pp.7, 2012, https://doi.org/10.1074/jbc.m111.306316
  8. Hijacking a hydroxyethyl unit from a central metabolic ketose into a nonribosomal peptide assembly line vol.109, pp.22, 2012, https://doi.org/10.1073/pnas.1204232109
  9. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics vol.32, pp.2, 2015, https://doi.org/10.1039/c4np00051j
  10. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights vol.34, pp.7, 2009, https://doi.org/10.1039/c7np00010c
  11. Catalysis of Extracellular Deamination by a FAD‐Linked Oxidoreductase after Prodrug Maturation in the Biosynthesis of Saframycin A vol.129, pp.31, 2017, https://doi.org/10.1002/ange.201704726
  12. Catalysis of Extracellular Deamination by a FAD‐Linked Oxidoreductase after Prodrug Maturation in the Biosynthesis of Saframycin A vol.56, pp.31, 2009, https://doi.org/10.1002/anie.201704726
  13. Chemo-enzymatic Total Syntheses of Jorunnamycin A, Saframycin A, and N-Fmoc Saframycin Y3 vol.140, pp.34, 2009, https://doi.org/10.1021/jacs.8b07161
  14. PokMT1 from the Polyketomycin Biosynthetic Machinery of Streptomyces diastatochromogenes Tü6028 Belongs to the Emerging Family of C-Methyltransferases That Act on CoA-Activated Aromatic Substrat vol.57, pp.6, 2009, https://doi.org/10.1021/acs.biochem.7b01219
  15. Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-03366-x
  16. Overexpression and characterization of a thermostable β-agarase producing neoagarotetraose from a marine isolate Microbulbifer sp. AG1 vol.38, pp.2, 2019, https://doi.org/10.1007/s13131-019-1349-y
  17. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges vol.4, pp.7, 2009, https://doi.org/10.1038/s41564-019-0415-8
  18. Biosynthetic Pathways to Nonproteinogenic α-Amino Acids vol.120, pp.6, 2020, https://doi.org/10.1021/acs.chemrev.9b00408
  19. Overexpression and characterization of a novel GH16 β-agarase (Aga1) from Cellulophaga omnivescoria W5C vol.42, pp.11, 2009, https://doi.org/10.1007/s10529-020-02933-x