DOI QR코드

DOI QR Code

Identification of Differentially Expressed Genes Between Preadipocytes and Adipocytes Using Affymetrix Bovine Genome Array

  • Yu, Seong-Lan (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lee, Sang-Mi (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kang, Man-Jong (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Jeong, Hang-Jin (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Sang, Byung-Chan (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Jeon, Jin-Tae (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Jun-Heon (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
  • Received : 2009.07.20
  • Accepted : 2009.12.18
  • Published : 2009.12.01

Abstract

Adipocytes are differentiated from preadipocytes and have large capacity for storing fats inside cells. In cattle, intramuscular fat (IMF) content is one of the major determinants for meat quality and also highly affects market prices, especially in Japan and Korea. In order to profiling differentially expressed genes between intramuscular fibroblast-like cells (preadipocytes) and their differentiated adipocytes, we have established intramuscular fibroblast-like cells from M. longissimus thoracis in Korean cattle (Hanwoo). The differentially expressed genes were selected by comparing these two types of cells ug thecommercially available 23kese two types of cells ug theco. The results indan ced that 206 arecomelements were differentially expressed. Of these, 67 and 94 ks wn genes were up and d wn regulaced, respectively, in adipocytes ug ng both 2-fold difference and Welch's t-test as the cut-off points. The differentially expressed genes identified in this study can be used as good markers for improving meat quality traits with further verification of their biological functions, especially IMF contents in cattle.

Keywords

References

  1. Asakura, A., Komaki M. and Rudnicki, M. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 68:245-253. https://doi.org/10.1046/j.1432-0436.2001.680412.x
  2. Aso, H., Abe, H., Nakajima, I., Ozutsumi, K., Yamaguchi, T., Takamori, Y., Kodama, A., Hoshino, F. B. and Takano. S. 1995. A preadipocyte clonal line from bovine intramuscular adipose tissue: nonexpression of GLUT-4 protein during adipocyte differentiation. Biochem. Biophys. Res. Commun. 213:369-375. https://doi.org/10.1006/bbrc.1995.2141
  3. Camps, M., Nichols, A. and Arkinstall, S. 2000. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14:6-16. https://doi.org/10.1096/fasebj.14.1.6
  4. Casas, E., Stone, R. T., Keele, J. W., Shackelford, S. D., Kappes, S. M. and Koohmaraie, M. 2001. A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J. Anim. Sci. 79:854-860. https://doi.org/10.2527/2001.794854x
  5. Casas, E., Keele, J. W., Shackelford, S. D., Koohmaraie, M. and Stone, R. T. 2004. Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35:2-6. https://doi.org/10.1046/j.1365-2052.2003.01067.x
  6. Chavey, C., Mari, B., Monthouel, M. N., Bonnafous, S., Anglard, P., Van Obberghen, E. and Tartare-Deckert, S. 2003. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278:11888-11896. https://doi.org/10.1074/jbc.M209196200
  7. Garces, C., Ruiz-Hidalgo, M. J., Font de Mora, J., Park, C., Miele, L., Goldstein, J., Bonvini, E., Porras, A. and Laborda, J. 1997. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J. Biol. Chem. 272:29729-29734. https://doi.org/10.1074/jbc.272.47.29729
  8. Girard, J., Perdereau, D., Foufelle, F., Prip-Buus, C. and Ferre, P. 1994. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J. 8:36-42. https://doi.org/10.1096/fasebj.8.1.7905448
  9. Green, H. and Kehinde, O. 1975. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell. 5:19-27. https://doi.org/10.1016/0092-8674(75)90087-2
  10. Hou, X., Richardson, S. J., Aguilar, M. I. and Small, D. H. 2005. Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry. 44:11618-11627. https://doi.org/10.1021/bi050700m
  11. Inoue-Murayama, M., Sugimoto, Y. Niimi, Y. and Aso, H. 2000. Type XVIII collagen is newly transcribed during bovine adipogenesis. Differentiation. 65:281-285. https://doi.org/10.1046/j.1432-0436.2000.6550281.x
  12. Jeong, Y. H., Lee, S. M., Kim, H. M., Park, H. Y., Yoon, D., Moon, S. J., Hosoda, A., Kim, D. H., Saeki, S. and Kang, M. J. 2008. Cloning, expression and regulation of bovine cellular retinoic acid-binding protein II (CRABP-II) during adipogenesis. Asian-Aust. J. Anim. Sci. 21:1551-1558. https://doi.org/10.5713/ajas.2008.70532
  13. Kook, S. H., Choi, K. C., Son, Y. O., Lee, K. Y., Hwang, I. H., Lee, H. J., Chang, J. S., Choi, I. H. and Lee, J. C. 2006. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol. Cells. 22:239-245.
  14. Lindstedt, L., Saarinen, J., Kalkkinen, N., Welgus, H. and Kovanen, P. T. 1999. Matrix metalloproteinases-3, -7, and -12, but not -9, reduce high density lipoprotein-induced cholesterol efflux from human macrophage foam cells by truncation of the carboxyl terminus of apolipoprotein A-I. Parallel losses of prebeta particles and the high affinity component of efflux. J. Biol. Chem. 274:22627-22634. https://doi.org/10.1074/jbc.274.32.22627
  15. Ma, Y., Koza-Taylor, P. H., DiMattia, D. A., Hames, L., Fu, H., Dragnev, K. H., Turi, T., Beebe, J. S., Freemantle, S. J. and Dmitrovsky, E. 2003. Microarray analysis uncovers retinoid targets in human bronchial epithelial cells. Oncogene. 22:4924-4932. https://doi.org/10.1038/sj.onc.1206728
  16. Martin, S. and Parton, R. G. 2005. Caveolin, cholesterol, and lipid bodies. Semin. Cell. Dev. Biol. 16:163-174. https://doi.org/10.1016/j.semcdb.2005.01.007
  17. Nakajima, I., Muroya, S., Tanabe, R. and Chikuni, K. 2002. Extracellular matrix development during differentiation into adipocytes with a unique increase in type V and VI collagen. Biol. Cell. 94:197-203. https://doi.org/10.1016/S0248-4900(02)01189-9
  18. Nakajima, I., Muroya, S., Tanabe, R. and Chikuni, K. 2002. Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes. Differentiation. 70:84-91. https://doi.org/10.1046/j.1432-0436.2002.700203.x
  19. Nakajima, I., Yamaguchi, T., Ozutsumi, K. and Aso, H. 1998. Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation. 63:193-200. https://doi.org/10.1111/j.1432-0436.1998.00193.x
  20. Nagy, L., Saydak, M., Shipley, N., Lu, S., Basilion, J. P., Yan, Z. H., Syka, P., Chandraratna, R. A., Stein, J. P., Heyman, R. A. and Davies, P. J. 1996. Identification and characterization of a versatile retinoid response element (retinoic acid receptor response element-retinoid X receptor response element) in the mouse tissue transglutaminase gene promoter. J. Biol. Chem. 271:4355-4365. https://doi.org/10.1074/jbc.271.8.4355
  21. Rangwala, S. M. and Lazar, M. A. 2000. Transcriptional control of adipogenesis. Annu. Rev. Nutr. 20:535-559. https://doi.org/10.1146/annurev.nutr.20.1.535
  22. Reusch, J. E., Colton, L. A. and Klemm, D. J. 2000. CREB activation induces adipogenesis in 3T3-L1 cells. Mol. Cell. Biol. 20:1008-1020. https://doi.org/10.1128/MCB.20.3.1008-1020.2000
  23. Rosen, E. D. and Spiegelman, B. M. 2000. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16:145-171. https://doi.org/10.1146/annurev.cellbio.16.1.145
  24. Scherer, P. E., Lisanti, M. P., Baldini, G., Sargiacomo, M., Mastick, C. C. and Lodish, H. F. 1994. Induction of caveolin during adipogenesis and association of GLUT4 with caveolinrich vesicles. J. Cell Biol. 127:1233-1243. https://doi.org/10.1083/jcb.127.5.1233
  25. Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., Kohtz, D. S., van Donselaar, E., Peters, P. and Lisanti, M. P. 1997. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272:29337-29346. https://doi.org/10.1074/jbc.272.46.29337
  26. Tahara, K., Aso, H., Yamasaki, T., Rose, M. T., Takasuga, A., Sugimoto, Y., Yamaguchi, T., Tahara, K. and Takano, S. 2004. Cloning and expression of type XII collagen isoforms during bovine adipogenesis. Differentiation. 72:113-122. https://doi.org/10.1111/j.1432-0436.2004.07204006.x
  27. Takenouchi, T., Miyashita, N., Ozutsumi, K., Rose, M. T. and Aso, H. 2004. Role of caveolin-1 and cytoskeletal proteins, actin and vimentin, in adipogenesis of bovine intramuscular preadipocyte cells. Cell Biol. Int. 28:615-623. https://doi.org/10.1016/j.cellbi.2004.05.003
  28. Taniguchi, M., Guan, L. L., Zhang, B., Dodson, M. V., Okine, E. and Moore, S. S. 2007. Gene expression patterns of bovine perimuscular preadipocytes during adipogenesis. Biochem. Biophys. Res. Commun. 366:346-351.
  29. Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Richardson, R. I. and Sheard, P. R. 1999. Manipulating meat quality and composition. Proc. Nutr. Soc. 58:363-370. https://doi.org/10.1017/S0029665199000488
  30. Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., McKeon, C., Darlington, G. J. and Spiegelman, B. M. 1999. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell. 3:151-158. https://doi.org/10.1016/S1097-2765(00)80306-8
  31. Zalesin, K. C., Franklin, B. A., Miller, W. M., Peterson, E. D. and McCullough, P. A. 2008. Impact of obesity on cardiovascular disease. Endocrinol. Metab. Clin. North Am. 37: 663-684. https://doi.org/10.1016/j.ecl.2008.06.004

Cited by

  1. Genome-Wide Specific Selection in Three Domestic Sheep Breeds vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0128688