References
- Adams LB, Dinauer MC, Morgenstern DE, Krahenbuhl JL:Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber Lung Dis 78;237-246, 1997 https://doi.org/10.1016/S0962-8479(97)90004-6
- Chan J, Xing Y, Magliozzo RS, Bloom BR: Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175;1111-1122, 1992 https://doi.org/10.1084/jem.175.4.1111
- Rojas M, Barrera LF, Puzo G, Garcia LF: Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages:role of nitric oxide and mycobacterial products. J Immunol 159;1352-1361, 1997
- Flynn JL, Scanga CA, Tanaka KE, Chan J: Effects of aminoguanidine on latent murine tuberculosis. J Immunol 160; 1796-1803, 1998
- Nathan C, Shiloh MU: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97;8841-8848, 2000 https://doi.org/10.1073/pnas.97.16.8841
- Bermudez LE: Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin Exp Immunol 91;277-281, 1993 https://doi.org/10.1111/j.1365-2249.1993.tb05895.x
- Chan J, Tanaka K, Carroll D, Flynn J, Bloom BR: Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun 63;736-740, 1995
- Kuo HP, Wang CH, Huang KS, Lin HC, Yu CT, Liu CY, Lu LC: Nitric oxide modulates interleukin-1beta and tumor necrosis factor-alpha synthesis by alveolar macrophages in pulmonary tuberculosis. Am J Respir Crit Care Med 161;192-199, 2000 https://doi.org/10.1164/ajrccm.161.1.9902113
- Lee SC, Dickson DW, Liu W, Brosnan CF: Induction of nitric oxide synthase activity in human astrocytes by interleukin-1beta and interferon-gamma. J Neuroimmunol 46;19-24, 1993 https://doi.org/10.1016/0165-5728(93)90229-R
- Wang CH, Lin HC, Liu CY, Huang KH, Huang TT, Yu CT, Kuo HP: Upregulation of inducible nitric oxide synthase and cytokine secretion in peripheral blood monocytes from pulmonary tuberculosis patients. Int J Tuberc Lung Dis 5;283-291, 2001
- Adams LB, Franzblau SG, Vavrin Z, Hibbs JB Jr, Krahenbuhl JL: L-arginine-dependent macrophage effector functions inhibit metabolic activity of Mycobacterium leprae. J Immunol 147;1642-1646, 1991
- Alam MS, Akaike T, Okamoto S, Kubota T, Yoshitake J, Sawa T, Miyamoto Y, Tamura F, Maeda H: Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect Immun 70;3130-3142, 2002 https://doi.org/10.1128/IAI.70.6.3130-3142.2002
- MacMicking J, Xie QW, Nathan C: Nitric oxide and macrophage function. Annu Rev Immunol 15;323-350, 1997 https://doi.org/10.1146/annurev.immunol.15.1.323
- Mayer B, Hemmens B: Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22;477-481, 1997 https://doi.org/10.1016/S0968-0004(97)01147-X
- Choi HS, Rai PR, Chu HW, Cool C, Chan ED: Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 166; 178-186, 2002 https://doi.org/10.1164/rccm.2201023
- Nicholson S, Bonecini-Almeida Mda G, Lapa e Silva JR, Nathan C, Xie QW, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N, Linhares C, Rom W, Ho JL: Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183;2293-2302, 1996 https://doi.org/10.1084/jem.183.5.2293
- Denis M: In vivo modulation of atypical mycobacterial infection: adjuvant therapy increases resistance to Mycobacterium avium by enhancing macrophage effector functions. Cell Immunol 134;42-53, 1991 https://doi.org/10.1016/0008-8749(91)90329-A
- Rodriguez PC, Zea AH, DeSalvo J, Culotta KS, Zabaleta J, Quiceno DG, Ochoa JB, Ochoa AC: L-arginine consumption by macrophages modulates the expression of CD3zeta chain in T lymphocytes. J Immunol 171;1232-1239, 2003 https://doi.org/10.4049/jimmunol.171.3.1232
- Robbins RA, Barnes PJ, Springall DR, Warren JB, Kwon OJ, Buttery LD, Wilson AJ, Geller DA, Polak JM: Expression of inducible nitric oxide in human lung epithelial cells. Biochem Biophys Res Commun 203;209-218, 1994 https://doi.org/10.1006/bbrc.1994.2169
- Paton NI, Chua YK, Earnest A, Chee CB: Randomized controlled trial of nutritional supplementation in patients with newly diagnosed tuberculosis and wasting. Am J Clin Nutr 80;460-465, 2004
- Wu G, Morris SM Jr: Arginine metabolism: nitric oxide and beyond. Biochem J 336;1-17, 1998 https://doi.org/10.1042/bj3360001
- Moncada S, Palmer RM, Higgs EA: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43;109-142, 1991
- Nathan C, Xie QW: Regulation of biosynthesis of nitric oxide. J Biol Chem 269;13725-13728, 1994
- Zaki MH, Akuta T, Akaike T: Nitric oxide-induced nitrative stress involved in microbial pathogenesis. J Pharmacol Sci 98;117-129, 2005 https://doi.org/10.1254/jphs.CRJ05004X
- Ralph AP, Kelly PM, Anstey NM: L-arginine and vitamin D:novel adjunctive immunotherapies in tuberculosis. Trends Microbiol 16;336-344, 2008 https://doi.org/10.1016/j.tim.2008.04.003
- Gow AJ, Thom SR, Ischiropoulos H: Nitric oxide and peroxynitrite-mediated pulmonary cell death. Am J Physiol 274;L112-L118, 1998 https://doi.org/10.1152/ajpcell.1998.274.1.C112
- Canthaboo C, Xing D, Wei XQ, Corbel MJ: Investigation of role of nitric oxide in protection from Bordetella pertussis respiratory challenge. Infect Immun 70;679-684, 2002 https://doi.org/10.1128/IAI.70.2.679-684.2002
- Umezawa K, Akaike T, Fujii S, Suga M, Setoguchi K, Ozawa A, Maeda H: Induction of nitric oxide synthesis and xanthine oxidase and their roles in the antimicrobial mechanism against Salmonella typhimurium infection in mice. Infect Immun 65;2932-2940, 1997
- Zaragoza C, Ocampo C, Saura M, Leppo M, Wei XQ, Quick R, Moncada S, Liew FY, Lowenstein CJ: The role of inducible nitric oxide synthase in the host response to coxsackievirus myocarditis. Proc Natl Acad Sci U S A 95;2469-2474, 1998 https://doi.org/10.1073/pnas.95.5.2469
- Zaragoza C, Ocampo CJ, Saura M, Bao C, Leppo M, Lafond-Walker A, Thiemann DR, Hruban R, Lowenstein CJ: Inducible nitric oxide synthase protection against coxsackievirus pancreatitis. J Immunol 163;5497-5504, 1999
- Zaragoza C, Ocampo CJ, Saura M, McMillan A, Lowenstein CJ: Nitric oxide inhibition of coxsackievirus replication in vitro. J Clin Invest 100;1760-1767, 1997 https://doi.org/10.1172/JCI119702
- Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS: Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79;1137-1146, 1994 https://doi.org/10.1016/0092-8674(94)90005-1
- Croen KD: Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 91;2446-2452, 1993 https://doi.org/10.1172/JCI116479
- Gamba G, Cavalieri H, Courreges MC, Massouh EJ, Benencia F: Early inhibition of nitric oxide production increases HSV-1 intranasal infection. J Med Virol 73;313-322, 2004 https://doi.org/10.1002/jmv.20093
- MacLean A, Wei XQ, Huang FP, Al-Alem UA, Chan WL, Liew FY: Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses. J Gen Virol 79;825-830, 1998 https://doi.org/10.1099/0022-1317-79-4-825
- Akaike T, Okamoto S, Sawa T, Yoshitake J, Tamura F, Ichimori K, Miyazaki K, Sasamoto K, Maeda H: 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Natl Acad Sci U S A 100;685-690, 2003 https://doi.org/10.1073/pnas.0235623100
- Kreil TR, Eibl MM: Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology 219;304-306, 1996 https://doi.org/10.1006/viro.1996.0252
- Yoshitake J, Akaike T, Akuta T, Tamura F, Ogura T, Esumi H, Maeda H: Nitric oxide as an endogenous mutagen for Sendai virus without antiviral activity. J Virol 78;8709-8719, 2004 https://doi.org/10.1128/JVI.78.16.8709-8719.2004
- Adler H, Beland JL, Del-Pan NC, Kobzik L, Brewer JP, Martin TR, Rimm IJ: Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J Exp Med 185;1533-1540, 1997 https://doi.org/10.1084/jem.185.9.1533
- Fujii S, Akaike T, Maeda H: Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats. Virology 256;203-212, 1999 https://doi.org/10.1006/viro.1999.9610
- Bolovan-Fritts CA, Spector SA: Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood 111;175-182, 2008 https://doi.org/10.1182/blood-2007-08-107730
- Zhang M, Xin H, Atherton SS: Murine cytomegalovirus (MCMV) spreads to and replicates in the retina after endotoxin-induced disruption of the blood-retinal barrier of immunosuppressed BALB/c mice. J Neurovirol 11;365-375, 2005 https://doi.org/10.1080/13550280591002432
- MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF: Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94;5243-5248, 1997 https://doi.org/10.1073/pnas.94.10.5243
-
Arias M, Rojas M, Zabaleta J, Rodríguez JI, París SC, Barrera LF, Garc
$\acute{i}$ a LF: Inhibition of virulent Mycobacterium tuberculosis by Bcg(r) and Bcg(s) macrophages correlates with nitric oxide production. J Infect Dis 176;1552-1558, 1997 https://doi.org/10.1086/514154 - Flesch IE, Hess JH, Kaufmann SH: NADPH diaphorase staining suggests a transient and localized contribution of nitric oxide to host defence against an intracellular pathogen in situ. Int Immunol 6;1751-1757, 1994 https://doi.org/10.1093/intimm/6.11.1751
- Doi T, Ando M, Akaike T, Suga M, Sato K, Maeda H: Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis. Infect Immun 61; 1980-1989, 1993
- Scanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J, Flynn JL: Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med 192;347-358, 2000 https://doi.org/10.1084/jem.192.3.347
- Aston C, Rom WN, Talbot AT, Reibman J: Early inhibition of mycobacterial growth by human alveolar macrophages is not due to nitric oxide. Am J Respir Crit Care Med 157;1943-1950, 1998 https://doi.org/10.1164/ajrccm.157.6.9705028
- Jagannath C, Actor JK, Hunter RL Jr: Induction of nitric oxide in human monocytes and monocyte cell lines by Mycobacterium tuberculosis. Nitric Oxide 2;174-186, 1998 https://doi.org/10.1006/niox.1998.9999
- Kwon OJ: The role of nitric oxide in the immune response of tuberculosis. J Korean Med Sci 12;481-487, 1997 https://doi.org/10.3346/jkms.1997.12.6.481
- Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z: Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis 78;247-255, 1997 https://doi.org/10.1016/S0962-8479(97)90005-8
- Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D: 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 66;5314-5321, 1998
- Nozaki Y, Hasegawa Y, Ichiyama S, Nakashima I, Shimokata K: Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect Immun 65;3644-3647, 1997
- Wang CH, Liu CY, Lin HC, Yu CT, Chung KF, Kuo HP: Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J 11;809-815, 1998 https://doi.org/10.1183/09031936.98.11040809
- Facchetti F, Vermi W, Fiorentini S, Chilosi M, Caruso A, Duse M, Notarangelo LD, Badolato R: Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am J Pathol 154;145-152, 1999 https://doi.org/10.1016/S0002-9440(10)65261-3
-
Kropf P, Baud D, Marshall SE, Munder M, Mosley A, Fuentes JM, Bangham CR, Taylor GP, Herath S, Choi BS, Soler G, Teoh T, Modolell M, M
$\ddot{u}$ ller I: Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 37;935-945, 2007 https://doi.org/10.1002/eji.200636542 - Gazzinelli RT, Eltoum I, Wynn TA, Sher A: Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-alpha and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol 151;3672-3681, 1993
- Tucker PC, Griffin DE, Choi S, Bui N, Wesselingh S: Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J Virol 70;3972-3977, 1996
- Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK: Role of microglia in central nervous system infections. Clin Microbiol Rev 17;942-964, 2004 https://doi.org/10.1128/CMR.17.4.942-964.2004
-
Rock RB, Hu S, Deshpande A, Munir S, May BJ, Baker CA, Peterson PK, Kapur V: Transcriptional response of human microglial cells to interferon-
$\gamma$ . Genes Immun 6;712-719, 2005 https://doi.org/10.1038/sj.gene.6364246 - Peterson PK, Hu S, Anderson WR, Chao CC: Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J Infect Dis 170;457-460, 1994 https://doi.org/10.1093/infdis/170.2.457
- Mazzolla R, Puliti M, Barluzzi R, Neglia R, Bistoni F, Barbolini G, Blasi E: Differential microbial clearance and immunoresponse of Balb/c (Nramp1 susceptible) and DBA2 (Nramp1 resistant) mice intracerebrally infected with Mycobacterium bovis BCG (BCG). FEMS Immunol Med Microbiol 32;149-158, 2002 https://doi.org/10.1111/j.1574-695X.2002.tb00547.x
- van Well GT, Wieland CW, Florquin S, Roord JJ, van der Poll T, van Furth AM: A new murine model to study the pathogenesis of tuberculous meningitis. J Infect Dis 195;694-697, 2007 https://doi.org/10.1086/511273
- Olin MR, Armien AG, Cheeran MC, Rock RB, Molitor TW, Peterson PK: Role of nitric oxide in defense of the central nervous system against Mycobacterium tuberculosis. J Infect Dis 198;886-889, 2008 https://doi.org/10.1086/591097
- Kwon OJ, Kim JH, Kim HC, Suh GY, Park JW, Chung MP, Kim H, Rhee CH: Nitric oxide expression in airway epithelial cells in response to tubercle bacilli stimulation. Respirology 3;119-124, 1998 https://doi.org/10.1111/j.1440-1843.1998.tb00109.x
- Roy S, Sharma S, Sharma M, Aggarwal R, Bose M: Induction of nitric oxide release from the human alveolar epithelial cell line A549: an in vitro correlate of innate immune response to Mycobacterium tuberculosis. Immunology 112;471-480, 2004 https://doi.org/10.1046/j.1365-2567.2004.01905.x
- Sharma M, Sharma S, Roy S, Varma S, Bose M: Pulmonary epithelial cells are a source of interferon-gamma in response to Mycobacterium tuberculosis infection. Immunol Cell Biol 85;229-237, 2007 https://doi.org/10.1038/sj.icb.7100037
Cited by
- Antimycobacterial activity ofIndigofera suffruticosawith activation potential of the innate immune system vol.48, pp.8, 2010, https://doi.org/10.3109/13880200903303471
- The Response of Mycobacterium Tuberculosis to Reactive Oxygen and Nitrogen Species vol.2, pp.None, 2009, https://doi.org/10.3389/fmicb.2011.00105
- Mycobacterium tuberculosis lipoarabinomannan enhances LPS-induced TNF-α production and inhibits NO secretion by engaging scavenger receptors vol.50, pp.6, 2009, https://doi.org/10.1016/j.micpath.2011.03.001
- Distinct roles for nitric oxide in resistant C57BL/6 and susceptible BALB/c mice to control Burkholderia pseudomallei infection vol.12, pp.None, 2009, https://doi.org/10.1186/1471-2172-12-20
- The role of 3-ketosteroid 1(2)-dehydrogenase in the pathogenicity of Mycobacterium tuberculosis vol.13, pp.None, 2013, https://doi.org/10.1186/1471-2180-13-43
- The Scavenger Protein Apoptosis Inhibitor of Macrophages (AIM) Potentiates the Antimicrobial Response against Mycobacterium tuberculosis by Enhancing Autophagy vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0079670
- The Endothelin System Has a Significant Role in the Pathogenesis and Progression of Mycobacterium tuberculosis Infection vol.82, pp.12, 2009, https://doi.org/10.1128/iai.02304-14
- Esculetin suppresses lipopolysaccharide-induced inflammatory mediators and cytokines by inhibiting nuclear factor-κB translocation in RAW 264.7 macrophages vol.10, pp.6, 2009, https://doi.org/10.3892/mmr.2014.2613
- Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas vol.111, pp.38, 2009, https://doi.org/10.1073/pnas.1408839111
- CD3+ICOS+ T cells show differences in the synthesis of nitric oxide, IFN-γ, and IL-10 in patients with pulmonary tuberculosis or in healthy household contacts vol.16, pp.4, 2009, https://doi.org/10.1007/s10238-015-0380-3
- Does Concurrent Use of Some Botanicals Interfere with Treatment of Tuberculosis? vol.18, pp.3, 2016, https://doi.org/10.1007/s12017-016-8402-1
- Macrophage and Mycobacterium: The war without beginning or end vol.6, pp.4, 2009, https://doi.org/10.1134/s2079086416040095
- Glutamate Dehydrogenase Is Required by Mycobacterium bovis BCG for Resistance to Cellular Stress vol.11, pp.1, 2009, https://doi.org/10.1371/journal.pone.0147706
- STAT3 Represses Nitric Oxide Synthesis in Human Macrophages upon Mycobacterium tuberculosis Infection vol.6, pp.None, 2009, https://doi.org/10.1038/srep29297
- CELLULAR IMMUNITY ACTIVATION METHOD BY STIMULATING RD1 COMPLEX PROTEINS AS VIRULENCE MARKER ON Mycobacterium tuberculum TO ESTABLISH DIAGNOSIS ON TUBERCULOSIS AND LATENT TUBERCULOSIS INFECTION vol.6, pp.1, 2009, https://doi.org/10.20473/ijtid.v6i1.1205
- Aberrant Inflammasome Activation Characterizes Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome vol.196, pp.10, 2016, https://doi.org/10.4049/jimmunol.1502203
- Mycobacterial Dormancy Systems and Host Responses in Tuberculosis vol.8, pp.None, 2009, https://doi.org/10.3389/fimmu.2017.00084
- Nucleotide-Binding Oligomerization Domain 2 Contributes to Limiting Growth of Mycobacterium abscessus in the Lung of Mice by Regulating Cytokines and Nitric Oxide Production vol.8, pp.None, 2009, https://doi.org/10.3389/fimmu.2017.01477
- Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.02008
- Mycobacterium tuberculosis EsxL inhibits MHC-II expression by promoting hypermethylation in class-II transactivator loci in macrophages vol.292, pp.17, 2009, https://doi.org/10.1074/jbc.m117.775205
- Nitric Oxide Modulates Macrophage Responses to Mycobacterium tuberculosis Infection through Activation of HIF-1α and Repression of NF-κB vol.199, pp.5, 2009, https://doi.org/10.4049/jimmunol.1700515
- The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays vol.7, pp.None, 2009, https://doi.org/10.1038/srep43478
- Mycobacteria exploit nitric oxide‐induced transformation of macrophages into permissive giant cells vol.18, pp.12, 2009, https://doi.org/10.15252/embr.201744121
- Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient - in vitro study vol.32, pp.4, 2009, https://doi.org/10.1080/14786419.2017.1311888
- Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis vol.9, pp.None, 2009, https://doi.org/10.3389/fimmu.2018.00193
- Tuberculosis and cigarette smoke exposure: An update ofin vitroandin vivostudies vol.44, pp.2, 2009, https://doi.org/10.1080/01902148.2018.1444824
- Phospholipase C‐γ2 promotes intracellular survival of mycobacteria vol.120, pp.4, 2019, https://doi.org/10.1002/jcb.27783
- Host and Mycobacterium tuberculosis interaction; expression of iNOS and Tbet genes from the host and virulence factors of the bacteria vol.17, pp.None, 2009, https://doi.org/10.1016/j.genrep.2019.100503
- Oxidative Phosphorylation-an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis vol.10, pp.7, 2009, https://doi.org/10.3390/app10072339
- European Respiratory Society International Congress, Madrid, 2019: nontuberculous mycobacterial pulmonary disease highlights vol.6, pp.4, 2009, https://doi.org/10.1183/23120541.00317-2020
- Determination of in vitro and in vivo immune response to recombinant cholesterol oxidase from Mycobacterium tuberculosis vol.228, pp.None, 2009, https://doi.org/10.1016/j.imlet.2020.11.002
- Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages vol.43, pp.12, 2020, https://doi.org/10.14348/molcells.2020.0030
- A Dual Marker for Monitoring MDR-TB Treatment: Host-Derived miRNAs and M. tuberculosis-Derived RNA Sequences in Serum vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.760468
- Host‐directed therapy to combat mycobacterial infections* vol.301, pp.1, 2021, https://doi.org/10.1111/imr.12951