Effect of Licochalcone A on the Production of Cytokines in LPS-Activated RAW264.7 Macrophage Cells

Licochalcone A가 대식세포주의 사이토카인 생성에 미치는 영향

  • Lee, Gi-Sae (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Lee, Sung-Ho (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Cho, Young-Chang (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Yoon, Goo (Korea Institute of Science and Technology, Gangneung Institute) ;
  • Cheon, Seung-Hoon (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Kang, Bok-Yun (College of Pharmacy & Research Institute of Drug Development, Chonnam National University)
  • 이기세 (전남대학교 약학대학 & 약품개발연구소) ;
  • 이성호 (전남대학교 약학대학 & 약품개발연구소) ;
  • 조영창 (전남대학교 약학대학 & 약품개발연구소) ;
  • 윤구 (강릉 한국과학기술연구원) ;
  • 천승훈 (전남대학교 약학대학 & 약품개발연구소) ;
  • 강복윤 (전남대학교 약학대학 & 약품개발연구소)
  • Received : 2009.04.08
  • Accepted : 2009.12.27
  • Published : 2009.12.31

Abstract

Licochalcone A is a chalcone isolated from the roots of Glycyrrhiza inflate. In this study, we examined the effects of licochalonce A on the production of cytokines in LPS-activated macrophages. Licochalcone A inhibited the secretion of proinflammatory cytokines such as IL-1$\beta$, IL-6, and TNF-$\alpha$. The reduced secretion of proinflammatory cytokines is related to the differences in the mRNA expression of IL-1$\beta$, IL-6, and TNF-$\alpha$. Moreover, licochalcone A inhibited the mRNA expression of IL-12p40, IL-18, and IL-23p19. To investigate its mechanism, we performed gel shift assay. Licochalcone A reduced nuclear NF-${\kappa}B$ binding activity in LPS-activated RAW264.7 cells. Taken together, these results suggest that licochalcone A has anti-inflammatory effects in LPS-activated macrophages and its mechanism could be through the down-regulation of binding to the ${\kappa}B$ site.

Keywords

References

  1. Forman, H. J. and Thomas, M. J. : Oxidant production and bactericidal activity of phagocytes. Annu. Rev. Physiol. 48, 669 (1986) https://doi.org/10.1146/annurev.ph.48.030186.003321
  2. Gordon, S. : Macrophage neutral proteinase and chronic inflammation. Ann. N Y Acad. Sci. 278, 176 (1976) https://doi.org/10.1111/j.1749-6632.1976.tb47028.x
  3. Patel, D. M., Arnold, P. Y., White, G. A., Nardella, J. P. and Mannie, M. D. : Class II MHC/peptide complexes are released from APC and are acquired by T cell responders during specific antigen recognition. J. Immunol. 163, 5201 (1999)
  4. Aderem, A. and Underhill, D. M. : Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593 (1999) https://doi.org/10.1146/annurev.immunol.17.1.593
  5. Boehm, U., Klamp, T., Groot, M. and Howard J. C. : Cellular response to interferon-gamma. Annu. Rev. Immunol. 15, 749 (1997) https://doi.org/10.1146/annurev.immunol.15.1.749
  6. Fujihara, M., Muroi, M., Tanamoto, K., Suzuki, T., Azuma, H. and Ikeda, H. : Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther. 100, 171 (2003) https://doi.org/10.1016/j.pharmthera.2003.08.003
  7. Aderem, A. and Ulevitch, R. J. : Toll-like-receptors in the induction of innate response. Nature 406, 782 (2000) https://doi.org/10.1038/35021228
  8. Koh, C. Y. and Yuan, D. : The effect of NK cell activation by tumo cells on antigen-specific antibody respnses. J. Immunol. 159, 4725 (1997)
  9. Beutler, B. and Rietschel, E. T. : Innatae immune sensing and it's roots: The story of endotoxin. Immunol. 3, 169 (2003)
  10. Schroder, K., Sweet, M. J. and Hume, D. A. : Signal integration between IFN-$\gamma$ and TLR signaling pathways in macrophages. Immunobiol. 211, 511 (2006)
  11. Zhang, G. and Ghosh, S. : Molecular mechanisms of NFkappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J. Endotoxin. Res. 6, 453 (2000) https://doi.org/10.1177/09680519000060060701
  12. Schlag, G., Redl, H. and Hallstrom, S. : The cell in shock: The origin of multiple organ failure. Resuscitation 21, 137 (1991) https://doi.org/10.1016/0300-9572(91)90044-Y
  13. Nathan, C. : Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051 (1992) https://doi.org/10.1096/fasebj.6.12.1381691
  14. Henka, M. T., Loschmann, P. A., Gleichmann, M., Weller, M., Schulz, J. B., Wullner, U. and Klockgether, T. : Induction of nitric oxide synthase and nitiric oxide-mediated apoptosis neuronal PC12 cells after stimulation with tumor necrosis factor-$\alpha$/lipopolisaccharide. J. Neurochem. 71, 88 (1998) https://doi.org/10.1046/j.1471-4159.1998.71010088.x
  15. Van der Meide, P. H. and Schellekens, H. : Cytokines and the immune response. Biotherapy 8, 243 (1996) https://doi.org/10.1007/BF01877210
  16. Cybulsky, M. I., Movaat, H. Z. and Dinarello, C. A. : Role of interukin-1 and tumor necrosis factor in acute inflammation. Ann. Inst. Pasteur. Immunol. 138, 505 (1987) https://doi.org/10.1016/S0769-2625(87)80068-5
  17. Hunter, C. A., Chizzonite, R. and Remington, J. S. : IL-1 beta is required for IL-12 to induce production of IFN-gamma by NK cells. A role for IL-1 beta in the T cell-independent mechanism of resistance against intracellular pathogens. J. Immunol. 155, 4347 (1995)
  18. Hirano, T. : Interleukin 6 (IL-6) and its receptor: their role in plasma cell neoplasias. Int. J. Cell. Cloning. 9, 166 (1991) https://doi.org/10.1002/stem.5530090303
  19. Katz, Y., Revel, M. and Strunk, R. C. : Interleukin 6 stimulates synthesis of complement proteins factor B and C3 in human skin fibroblasts. Eur. J. Immunol. 19, 983 (1989) https://doi.org/10.1002/eji.1830190605
  20. Decker, T., Lohmann-Matthes, M. L. and Gifford, G. E. : Cellassociated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J. Immunol. 138, 957 (1987)
  21. Ethuin, F., Gérard, B., Benna, J. E., Boutten, A., Gougereot- Pocidalo, M. A., Jacob, L. and Chollet-Martin, S. : Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Lab. Invest. 84, 1363 (2004) https://doi.org/10.1038/labinvest.3700148
  22. Yoon, G., Jung, D. Y. and Cheon, S. H. : Cytotoxic allyl retrochalcone from roots of glycyrrhiza inflata. Chem. Pharm. Res. 53, 694 (2005) https://doi.org/10.1248/cpb.53.694
  23. Fu, B., Li, H., Wang, X., Lee, F. S. and Cui, S. : Isolation and identification of flavonoids in licorice and study of their inhibitory effects on tyrosinase. J. Agric. Food Chem. 53, 7408 (2005) https://doi.org/10.1021/jf051258h
  24. Shibata, S., Inoue, H., Iwata, S., Ma, R. D., Yu, L. J., Ueyama, H., Takayasu, J., Hasegawa, T., Tokuda, H. and Nishino, A. : Inhibitory effects of licochalcone A isolated from Glycyrrhiza inflata root on inflammatory ear edma and tumour promotion in mice. Planta. Med. 57, 221 (1991) https://doi.org/10.1055/s-2006-960078
  25. Chen, M., Christensen, S. B., Blom, J., Lemmich, E., Nadelmann, L., Fich, K., Theander, T. G. and Kharazmi, A. : Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrob. Agents. Chemother. 37, 2550 (1993) https://doi.org/10.1128/AAC.37.12.2550
  26. Tsukiyama, R., Katsura, H., Toki, N. and Kobayashi, M. : Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents. Chemother. 46, 1226 (2002) https://doi.org/10.1128/AAC.46.5.1226-1230.2002
  27. Rafi, M. M., Rosen, R. T., Vassil, A., Ho, C. T., Zhang, H., Ghai, G., Lambert, G. and DiPaola, R. S. : Modulation of bcl-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid. Anticancer. Res. 20, 2653 (2000)
  28. Yoon, G., Kang, B. Y. and Cheon, S. H. : Topoisomerase I inhibition and cytotoxicity of licochalcones A and E from Glycyrrhiza inflata. Arch. Pharm. Res. 30, 313 (2007) https://doi.org/10.1007/BF02977611
  29. Kwon, H. S., Park, J. H., Kim, D. H., Kim, Y. H., Park, J. H., Shin, H. K. and Kim, J. K. : Licochalcone A isolated from licorice suppresses lipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. J. Mol. Med. 86, 1287 (2008) https://doi.org/10.1007/s00109-008-0395-2
  30. Furusawa, J., Funakoshi-Tago, M., Tago, K., Mashino, T., Inoue, H., Sonoda, Y. and Kasahara, T. : Licochalcone A significantly suppresses LPS signaling pathway through the inhibition of NF-kappaB p65 phosphorylation at serine 276. Cell. Signal. 21, 778 (2009) https://doi.org/10.1016/j.cellsig.2009.01.021
  31. Furusawa, J., Funakoshi-Tago, M., Mashino, T., Tago, K., Inoue, H., Sonoda, Y. and Kasahara, T. : Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-kappaB p65 in LPS signaling pathway. Int. Immunopharmacol. 9, 499 (2009) https://doi.org/10.1016/j.intimp.2009.01.031