References
- W. C. Bert, Optimal design of a composite-material plate to maximize its fundamental frequency, J. Sound Vibr. 50, 229–237 (1977) https://doi.org/10.1016/0022-460X(77)90357-1
- W. C. Bert, Design of clamped composite-material plates to maximize fundamental frequency, J. Mech. Design 1, 274–278 (1978)
- T. Y. Kam and R. R. Chang, Optimal design of laminated composite plates with dynamic and static considerations, Comput. Struct. 32, 387–393 (1992)
- S. Adali and V. E. Verijenko, Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations, Compos. Struct. 54, 131–138 (2001) https://doi.org/10.1016/S0263-8223(01)00080-0
- R. L. Riche and R. T. Haftka, Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm, AIAA J. 31, 951–956 (1993) https://doi.org/10.2514/3.11710
- J. L. Pelletier and S. S. Vel, Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass, Computers and Structures 84, 2065–2080 (2006) https://doi.org/10.1016/j.compstruc.2006.06.001
- Y. Narita, Layerwise optimization for the maximum fundamental frequency of laminated composite plate, J. Sound Vibr. 263, 1005–1016 (2003) https://doi.org/10.1016/S0022-460X(03)00270-0
- Y. Narita and G. J. Turvey, Maximizing the buckling loads of symmetrically laminated composite rectangular plates using a layerwise optimization approach, J. Mech. Engng Sci. 218, 681–691 (2004) https://doi.org/10.1243/0954406041319554
- Y. Narita, Maximum frequency design of laminated plates with mixed boundary conditions, Intl J. Solid Struct. 43, 4342–4356 (2006) https://doi.org/10.1016/j.ijsolstr.2005.06.104
-
Z. G
$\ddot{u}$ rdal, R. T. Haftka and P. Hajela, Design and Optimization of Laminated Composite Materials. Wiley, London (1999) - H. Fukunaga and H. Sekine, Stiffness design method of symmetric laminates using lamination parameters, AIAA J. 30, 2791–2793 (1992) https://doi.org/10.2514/3.11304
- H. Fukunaga, H. Sekine and M. Sato, Optimal design of symmetric laminated plates for fundamental frequency, J. Sound Vibr. 171, 219–229 (1994) https://doi.org/10.1006/jsvi.1994.1115
- H. Fukunaga, H. Sekine, M. Sato and A. Iino, Buckling design of symmetrically laminated plates using lamination parameters, Computers and Structures 57, 643–649 (1995) https://doi.org/10.1016/0045-7949(95)00050-Q
- J. L. Grenestedt, Layup optimization and sensitivity analysis of the fundamental eigenfrequency of composite plates, Compos. Struct. 12, 193–209 (1989) https://doi.org/10.1016/0263-8223(89)90022-6
- A. Serge, Design of mulitspan composite plates to maximize the fundamental frequency, Composites 26, 691–697 (1995) https://doi.org/10.1016/0010-4361(95)91135-R
- A. Todoroki and R. T. Haftka, Stacking sequence optimization by a genetic algorithm with a new recessive gene like repair strategy, Composites Part B: Engng 29, 277–285 (1998) https://doi.org/10.1016/S1359-8368(97)00030-9
- A. Todoroki and T. Ishikawa, Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation, Compos. Struct. 64, 349–357 (2004) https://doi.org/10.1016/j.compstruct.2003.09.004
- R. Matsuzaki and A. Todoroki, Stacking-sequence optimization using fractal branch-and-bound method for unsymmetrical laminates, Compos. Struct. 78, 537–550 (2007) https://doi.org/10.1016/j.compstruct.2005.11.015
- M. Kameyama and H. Fukunaga, Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters, Computers and Structures 85, 213–224 (2007) https://doi.org/10.1016/j.compstruc.2006.08.051
- S. Setoodeh, M. M. Abdalla and Z. Gürdal, Design of variable-stiffness laminates using lamination parameters, Composites Part B: Engng 37, 301–309 (2006) https://doi.org/10.1016/j.compositesb.2005.12.001
- M. M. Abdalla, S. Setoodeh and Z. Gürdal, Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters, Compos. Struct. 81, 283–291 (2007) https://doi.org/10.1016/j.compstruct.2006.08.018
-
S. Setoodeh, M. M. Abdalla, S. T. Ijsselmuiden and Z. G
$\ddot{u}$ rdal, Design of variable-stiffness composite panels for maximum buckling load, Compos. Struct. 87, 109–117 (2009) https://doi.org/10.1016/j.compstruct.2008.01.008 -
Z. G
$\ddot{u}$ rdal and R. Olmedo, In-plate response of laminates with spatially varying fiber orientations: variable stiffness concept, AIAA J. 31, 751–758 (1993) https://doi.org/10.2514/3.11613 - K. Yamazaki, Two-level optimization technique of composite laminate panels by genetic algorithms, in: Proc. AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dynamics, Mater. Conf. Exhibit, 37th, Salt Lake City, UT, April 15–17, AIAA-96-1539-CP, pp. 1882–1887 (1996)
- M. Autio, Determining the real lay-up of a laminate corresponding to optimal lamination parameters by genetic search, Struct. Multidiscipl. Optimization 20, 301–310 (2000) https://doi.org/10.1007/s001580050160
- Y. Narita, Combinations for the free-vibration behaviors of anisotropic rectangular plates under general edge condition, J. Appl. Mech. 67, 568–573 (2000) https://doi.org/10.1115/1.1311959
- G. N. Vanderplaats and H. Sugimoto, A general-purpose optimization program for engineering design, Comp. Struct. 24, 13–21 (1986) https://doi.org/10.1016/0045-7949(86)90331-7
- W. H. Press, S. A. Teukolsky,W. T. Vetterling and B. P. Flannery, Numerical Recipes in Fortran 77. Cambridge University Press, London (1992)