목단피(牧丹皮)가 손상된 성상신경세포의 CD81 및 GFAP의 발현에 미치는 영향

The Effect of the Moutan Radicis Cortex on Expression of CD81 and GFAP in Injured Astrocyte

  • 문성진 (원광대학교 한의과대학 내과학교실) ;
  • 성기문 (원광대학교 한의과대학 내과학교실) ;
  • 임진영 (원광대학교광주병원 재활의학과) ;
  • 송봉근 (원광대학교 한의과대학 내과학교실)
  • Moon, Sung-Jin (Dept. of Internal Medicine, Wonk-wang University Oriental Medical School) ;
  • Seon, Ki-Moon (Dept. of Internal Medicine, Wonk-wang University Oriental Medical School) ;
  • Lim, Jin-Young (Dept. of Rehabilitation, Wonk-wang University Medical Center) ;
  • Song, Bong-Keun (Dept. of Internal Medicine, Wonk-wang University Oriental Medical School)
  • 발행 : 2009.03.31

초록

Object : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis makes physical and mechanical barriers. If gliosis formation could be suppressed, irreversible axon damage would be reduced. This could mean that an injured CNS could be regenerated. CD81 and GFAP have close relationships to gliosis. The increase in glial cells at CNS injury gives rise to the expression of CD81 and GFAP. CD81 was postulated to play a central role in the process of CNS scar formation. Method : In this study, the author investigated the effect of the water extract of the Moutan Radicis Cortex on regulation of CD81 and GFAP expression in injured CNS cells. MTT assay was used to examine cell viability, while RT-PCR and ELISA methods were carried out to measure the expression of CD81 and GFAP in the astrocyte. Results : We observed that water extract of the Moutan Radicis Cortex increased cell viability under hypoxia induced by $CoCl_2$ and suppressed the expression of CD81 and GFAP up-regulated by hypoxia. Conclusion : These results suggest that the Moutan Redicis Cortex could promote neural regeneration as a consequence of protecting CNS cells from hypoxia and suppressing the reactive gliosis following CNS injury.

키워드

참고문헌

  1. Dijkstra, S., Geisert, E.E., Gispen, W.H., Bar, P.R., Joosten, E.A., Upregulation of CD81 (target of the antiproliferative antibody, TAPA) by reactive microglia and astrocytes afterspinalcord injury in therat.J.Comp. Neurol.2000;428:266-77. https://doi.org/10.1002/1096-9861(20001211)428:2<266::AID-CNE6>3.0.CO;2-0
  2. Stichel CC, Muller HW. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res.1998;294:1-9. https://doi.org/10.1007/s004410051151
  3. Reier PJ, Houle JD. The glial scar : its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol.1988;47:87-138.
  4. DusartI, Schwab ME. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinalcord. Eur J Neurosci. 1994;6:712-24. https://doi.org/10.1111/j.1460-9568.1994.tb00983.x
  5. Geisert EE Jr, Yang L, Irwin MH. Astrocyte growth, reactivity, and the target of the antiproliferative antibody, TAPA. J Neurosci. 1996;16:5478-87. https://doi.org/10.1523/JNEUROSCI.16-17-05478.1996
  6. Irwin, M.H., Geisert, E.E.,The upregulation of a glial cell surface antigen at the astrocytic scar in the rat. Neurosci. Lett. 1993;154:57-60. https://doi.org/10.1016/0304-3940(93)90170-P
  7. Song BK, Geisert GR, Vazquez-Chona F, Geisert EE Jr. Temporal regulation of CD81 following retinal injury in the rat. Neurosci Lett. 2003;338(1):29-32. https://doi.org/10.1016/S0304-3940(02)01364-2
  8. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma.1999;16(10):851-63. https://doi.org/10.1089/neu.1999.16.851
  9. Guth L, Albuquerque EX, Deshpande SS, Barrett CP, Donati EJ, Warnick JE. Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J Neurosurg. 1980;52(1) :73-86. https://doi.org/10.3171/jns.1980.52.1.0073
  10. Puchala E, Windle WF. The possibility of structural and functional restitution after spinalcord injury. A review. Exp Neurol. 1977;55(1):1-42. https://doi.org/10.1016/0014-4886(77)90155-8
  11. Gimenez y Ribotta M, Rajaofetra N, Morin- Richaud C, Alonso G, Bochelen D, Sandillon F, Legrand A, Merse lM, Privat A. Oxysterol (7beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J Neurosci Res.1995; 41(1): 79-95. https://doi.org/10.1002/jnr.490410110
  12. Zhang SX, Geddes JW, Owens JL, Holmberg EG. X-irradiation reduceslesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 2005;20(2):519-30.
  13. Broude E, McAtee M, Kelley MS, Bregman BS. Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurons after spinal cord injury. Exp Neurol.1999;155(1) :65-78. https://doi.org/10.1006/exnr.1998.6964
  14. Lee IW. Stem cells and Neurosurgery. J korean neurosurgery soc. 2003;33:1-12.
  15. Menet V, Gimenez Y Ribotta M, Sandillon F, Privat A. GFAP null astrocytes are afavorable substrate for neuronal survival and neurite growth. Glia. 2000;31(3):267-72. https://doi.org/10.1002/1098-1136(200009)31:3<267::AID-GLIA80>3.0.CO;2-N
  16. Dijkstra S, Duis S, Pans IM, Lankhorst AJ, Hamers FP, Veldman H, Bar PR, Gispen WH, Joosten EA, Geisert EE Jr. Intraspinal administration of an antibody against CD81 enhances functional recovery and tissue sparing after experimental spinal cord injury. Exp Neurol. 2006;202(1):57-66. https://doi.org/10.1016/j.expneurol.2006.05.011
  17. Lau CH, Chan CM, ChanYW, Lau KM, Lau TW, Lam FC, Law WT, Che CT, Leung PC, Fung KP, Ho YY, Lau CB. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan an ditsactive component paeonol. Phytomedicine. 2007 Nov; 14(11):778-84. https://doi.org/10.1016/j.phymed.2007.01.007
  18. Jung CH, Zhou S, Ding GX, Kim JH, Hong MH, Shin YC, Kim GJ, Ko SG. Antihyperglycemic activity of herb extracts on streptozotocin-induced diabeticrats. Biosci Biotechnol Biochem. 2006 Oct; 70(10):2556-9. https://doi.org/10.1271/bbb.60238
  19. Kang DG, Moon MK, Choi DH, Lee JK, Kwon TO,Lee HS.Vasodilatory and anti-inflammatory effects of the1,2,3,4,6-penta-O -galloyl-beta-D-glucose (PGG) via a nitric oxide-cGMP pathway.Eur J Pharmacol.2005 Nov7;524(1-3):111-9. https://doi.org/10.1016/j.ejphar.2005.08.061
  20. Lee SJ, Lee IS, Mar W. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-penta-O-galloyl-beta-Dglucose in murine macrophage cells. Arch Pharm Res. 2003Oct;26(10): 832-9. https://doi.org/10.1007/BF02980029
  21. Hsieh CL, Cheng CY, Tsai TH, Lin IH, Liu CH, Chiang SY, Lin JG, Lao CJ, Tang NY. Paeonol reduced cerebral infarction involving the superoxide anion and microglia activation in ischemia-reperfusion injured rats. J Ethnopharmacol. 2006 Jun 30;106(2):208-15. https://doi.org/10.1016/j.jep.2005.12.027
  22. Humphrey MF, Chu Y, Mann K, Rakoczy P. Retinal GFAP and bFGF expression after multiple argon laser photocoagulation injuries assessed by both immunoreactivity and mRNA levels. Exp Eye Res. 1997;64:361-9. https://doi.org/10.1006/exer.1996.0219
  23. Silver, J, Miller, J.H, Regeneration beyond the glialscar. Nat. Rev. Neurosci. 2004;5:146-56. https://doi.org/10.1038/nrn1326
  24. Stichel, C.C, Muller, H.W, TheCNS lesion scar.new vistas on an old regeneration barrier. Cell Tissue Res.1998;294:1-9. https://doi.org/10.1007/s004410051151
  25. Eng LF, Reier PJ, Houle JD. Astrocyte activation and fibrous gliosis. glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue. Prog Brain Res.1987;71:439-55. https://doi.org/10.1016/S0079-6123(08)61845-2
  26. Bahr M, Przyrembe lC, Bastmeyer M. Astrocytes from adult rat optic nerves are nonpermissive for regenerating retinal ganglion cell axons. Exp Neurol.1995;131(2):211-20. https://doi.org/10.1016/0014-4886(95)90043-8
  27. Fawcett JW, Housden E, Smith-Thomas L, Meyer RL. The growth of axons in three-dimensional astrocyte cultures. Dev Biol.1989 ;135(2):449-58. https://doi.org/10.1016/0012-1606(89)90193-0
  28. McKeon RJ, Hoke A, Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol. 1995;136(1):32-43. https://doi.org/10.1006/exnr.1995.1081
  29. Eng LF, Ghirnikar RS, Lee YL, Glialfibrillary acidic protein : GFAP-thirty-one-years(1969-2000). Neurochemical Research.2000;25:1439-51. https://doi.org/10.1023/A:1007677003387
  30. Brook GA, Plate D, Franzen R, Martin D, Moonen G, Schoenen J, Schmitt AB, Noth J, Nacimiento W. Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat. J Neurosci Res.1998;53:51-65. https://doi.org/10.1002/(SICI)1097-4547(19980701)53:1<51::AID-JNR6>3.0.CO;2-I
  31. Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME. A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem.1997;272:2595-8. https://doi.org/10.1074/jbc.272.5.2595
  32. Geisert EE, Jr, Abel HJ, Fan L, Geisert GR. Retinal pigment epithelium of the rat express CD81, the target of the anti-proliferative antibody (TAPA). Invest Ophthalmol Vis Sci. 2002;43:274-80.
  33. Peduzzi, J.D., Grayson, T.B., Fischer, F.R., Geisert, E.E., The expression of TAPA (CD81) correlates with the reactive response of astrocytes in the developing rat CNS. Exp. Neurol.1999;160:460-8. https://doi.org/10.1006/exnr.1999.7234
  34. Dijkstra, S., Geisert, E.E., Dijkstra, C.D., Bar, P.R., Joosten, E.A., CD81 and microglial activation invitro : proliferation, phagocytosis and nitric oxide production. J. Neuroimmunol. 2001;114:151-9. https://doi.org/10.1016/S0165-5728(01)00240-5
  35. Sullivan CD, Geisert EE, Jr. Expression of rat target of the antiproliferative antibody (TAPA) in the developing brain. J Comp Neurol.1998;396:366-80. https://doi.org/10.1002/(SICI)1096-9861(19980706)396:3<366::AID-CNE7>3.0.CO;2-0
  36. Ribotta MG, Menet V, Privat A. Glialscar and axonal regeneration in the CNS : lessons from GFAP and vimentin transgenic mice. Acta Neurochir Suppl. 2004;89:87-92.
  37. Shin MK. Clinical Herbalogy, Younglim Publishing Co: Seoul; 2002,p.385-7.
  38. Guo BL, Basang D, Xiao PG, Hong DY. Research on the quality of original plants and material medicine of Cortex Paeoniae. Zhongguo Zhong Yao Za Zhi. 2002;27:654-7.
  39. Shimada Y, Yokoyama K, Goto H, Sekiya N, Mantani N, Tahara E, Hikiami H, Terasawa K. Protective effect of keishi-bukuryo-gan and its constituent medicinal plants against nitric oxide donor-induced neuronal death in cultured cerebellar granule cells. Phytomedicine. 2004 Jul;11(5):404-10. https://doi.org/10.1016/j.phymed.2003.04.002