References
- M. Montemerlo, 'FastSLAM: A factored solution to the simultaneous localization and mapping problem with unknown data association,' Ph.D. thesis, Camegie Mellon University, 2003
- M. Montemerlo and S. Thrun, 'Simultaneous localimtion and mapping with unknown data association using FastSLAM,' IEEE International Corrference on Robotics and Automation, pp. 1985-1991,2003
- T. Bailey, J. Nieto, and E. Nebot, 'Consistency of the FastSLAM algorithm,' IEEE International Conference on Robotics and Automation, pp. 424-429, 2006
- S. Thrun, W. Burgard, and D. Fox, 'Probabilistic robotics,' MIT Press, Cambridge, 2005
- N. J. Gordon, D. J. Salmond, and A. F. M. Smith, 'Novel approach to nonlinear/non-gaussian Bayesian state estimation,' IEE-Proceedings- F. vol. 140, no. 2. pp. 107-113 https://doi.org/10.1049/ip-f-2.1993.0015
- N. Kwak, I. K. Kim, and H. C. Lee, et al., 'Adaptive prior boosting technique for the efficient sample size in FastSLAM,' IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007
- I. K. Kim, N. Kwak, H. C. Lee, and B. H. Lee, 'Improved particle filter using geometric relation between particles in FastSLAM,' Robotica, Oct. 2008. (accepted)
- Y. Zhao and J. Song, 'GDILC:A grid-based density-isoline clustering algorithm,' Proceedings of International Conforence on Info-tech and lifo-net, 2001
- M. Ester, H. Kriegel, J. Sander, and X. Xu, 'A density-based algorithm for discovering clusters in large spatial databases with noise,' inProc. KDD, pp. 226-231,1996
- E. Schikuta, 'Grid clustering: An efficient hierarchical clustering method for very large data sets,' Proc. 13th Int. Conf. on Pattern Recognition, vol. 2, pp. 101-105, 1996 https://doi.org/10.1109/ICPR.1996.546732
- K. Alsabti, S. Ranka, and V. Singh, 'An efficient K-means clustering algorithm,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, issue. 7, pp. 881-892,2002 https://doi.org/10.1109/TPAMI.2002.1017616
- N. Kwak, G W. Kim, and B. H. Lee, 'A new compensation technique based on analysis of resampling process in FastSLAM,' Robotica, vol. 26, no. 2, pp. 205-217, Mar. 2008
- S. Lee and S. Lee, 'Recursive particle filter with geometry constraints for SLAM,' IEEE. Int. Conf. Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, pp. 395-401, 2006
- S. Thrun, D. Fox, and W. Burgard, 'Monte carlo localization with mixture proposal distribution,' American Association for Artificial Intelligence, pp. 859-865, 2000
- G Grisetti, G D. Tipaldi, and C. Stachniss, et al., 'Fast and accurate SLAM with rao-blackwellized particle filters,' Robotics andAutonomous Systems, vol. 55, pp. 30-38, Jan 2007 https://doi.org/10.1016/j.robot.2006.06.007
- M. Montemerlo and S. Thrun, 'imultaneous localization and mapping with unknown data association using fastslam,' Proceedings of the 2003 IEEE International Conforence on Robotics and Automation, pp. 185-1991 https://doi.org/10.1109/ROBOT.2003.1241885
- J. Kennedy and R. C. Eberhart, 'Particle swarm optimization,' Proceedings of IEEE International 1995 Conforence on Neural Networks, voI.4,pp. 1942-1948, 1995 https://doi.org/10.1109/ICNN.1995.488968