DOI QR코드

DOI QR Code

Wavelet Transforms: Practical Applications in Power Systems

  • 발행 : 2009.06.30

초록

An application of wavelet analysis to power system transient generated signals is presented in this paper. With the time-frequency localisation characteristics embedded in wavelets, the time and frequency information of a waveform can be presented as a visualised scheme. This feature is very important for non-stationary signals analysis such as the ones generated from power system disturbances. Unlike the Fourier transform, the wavelet transform approach is more efficient in monitoring fault signals as time varies. For time intervals where the function changes rapidly, this method can zoom in on the area of interest for better visualisation of signal characteristics.

키워드

참고문헌

  1. Morante, M. G., and Nicoletti, D. w., 'A waveletbased Differential Transformer Protection', IEEE Transactions on Power Delivery vol. 14, pp.1351-1356, 1999 https://doi.org/10.1109/61.796228
  2. Lai, T. M., Snider, L. A., and Lo, E., 'Wavelet Transform Basεd Relay Algorithm for thε Detection of Stochastic High lmpedance Faults', Electric Power Systems Research vol. 76, pp. 626-633, 2006 https://doi.org/10.1016/j.epsr.2005.12.021
  3. Polikar, R., 'The Wavelεt Tutorial', 1994. Retrieved February 15, 2005 from http://engineering.rowan. edlu/~polikar/WAVELETS/Wttutorial.html
  4. Kim, C. H., and Aggarwal, R., 'Wavelet Transforms in Powεr Systems,' IEE Power Engineering Journal vol. 15, pp. 193-202, 2001 https://doi.org/10.1049/pe:20010404
  5. 'Detection of Downed Conductors on Utility Distribution Systems', IEEE Tutorial Course, 90EH0310-3-PWR, 1989
  6. Carr, J., 'Detεction of High Impedance Faults on Multi-grounded Primary Distribution Systems', IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, pp. 2008-2116, 1981 https://doi.org/10.1109/TPAS.1981.316556
  7. Aucoin, M., 'Status ofHigh Impedance Fault Detection', IEEE Transαctions on Power Apparatus and Systems, vol. PAS-104, pp. 638-644, 1985
  8. Ebron, S., Lubkeman, D. L., and White, M., 'A Neural Network Approach to the Detection of Incipient Fau1ts on Power Distribution Feeders', IEEE Transactions on Power Delivery, 5, pp. 905-914, 1990 https://doi.org/10.1109/61.53101
  9. Uriarte, F. M., and Centeno, V., 'High-impedance fau1t detection and localization in distribution feeders with microprocessor basεd devices', in Power Symposium Proceεdings of the 37th Annual North American, pp. 219-224, 2005
  10. Mamishev A. v., Russell, B. D. and Benner, C. L., ' Analysis of High Impedance Faults Using Fractal Techniques', IEEE Transactions on Power Delivery, 11, pp. 435-440, 1999
  11. Huang, S. J., and Hsieh, C. T., 'High-impedance Fault Detection utilizing A Morlet Wavelet Transform Approach', IEEE Transactions on Power Delivery, vol. 14, pp. 1401-1406, 1999 https://doi.org/10.1109/61.796234
  12. Akorㄷde, M. F., 'Development of an Algorithm for High Impedance Faults Detection on 11 kV Distribution N etworks using the Wavelet Transform Approach' an M. Eng. unpublished Thesis, 2005, Bayero University Kano, Nigeria
  13. Jabr, H. M., and Megahed, A. I., 'A wavelet-FIRANN Technique for High-Impedance Arcing Faults Detection in Distribution Systems', presented at the Intemational Conference on Power Systems Transients, (lPST ' 05), Montreal, Canada, 2005, pp. 1-6
  14. Roger, C. D., Mark, F. M., Surya, S., and Beaty, H. W., 'Electrical Power Systems Quality', 2nd ed, McGraw-Hill Professional New York, 2002, pp. 1-54
  15. Gaouda, A. M., Salama, M. M. A., Sultan, M. R., and Chikhani, A. Y., 'Power quality detection and classification using wavelet-multiresolution signal decomposition', IEEE Transactions on Power Delivery, vol. 14, pp. 1469-1476, 1999 https://doi.org/10.1109/61.796242
  16. Poisson, O., Rioual, P., and Meunier, M., 'Detection and measurement of power quality disturbances usmgwavelet transform', IEEE transactions on Power Delivery, vol. 15, pp. 1039-1044, 2000 https://doi.org/10.1109/61.871372
  17. Heydt, G. T., and Galli, A. W., 'Transiεnt power quality problems analyzed using wavelets', IEEE Transactions on Power Delivery, vol. 12, pp. 908-915, 1997 https://doi.org/10.1109/61.584412
  18. Abu-Elanien, A. E. B., and Salama, M. M. A., 'A Wavelet-ANN Technique for Locating Switched Capacitors in Distribution Systems', IEEE Transactions on Power Delivery, vol. 24, pp. 400-409, 2009 https://doi.org/10.1109/TPWRD.2008.2002675
  19. Aggarwal, R. K., 'An Inverstigation into the Impact on Voltage Sag due to Faults in Low Voltage Power Kistribution Systems' KIEE International Transactions on Power Engineering, vol. 5-A, pp. 97-102, 2005
  20. Fitzer, C., Barnes, M. and Green, P., ' Voltage Sag Detection Technique for a Dynamic Voltage Restorer', IEEE Transactions on Industry Applications, vol. 40, pp.203-212, 2004 https://doi.org/10.1109/TIA.2003.821801
  21. Huang, S. J., Hsieh, C. T., and Huang, C. L., 'Application of Morlet Wavelets to Supervise Power System Disturbances', IEEE Transactions on Power Delivery vol. 14, pp. 235-243, 1999 https://doi.org/10.1109/61.736728
  22. Song, S. H., and Nam, K., 'Instantaneous Phaseangle Estimation under Unbalanced Voltage-sag Conditions', Proceeding IEE-Generation, Transmission, Distribution, vol. 147, pp. 409-415, 2000 https://doi.org/10.1049/ip-gtd:20000716
  23. Parsons, A. C., Grady, W. M., and Powers, E. J., 'A Wavelet-based Procedure for Automatically Determining the Beginning and End of Transmission System Voltage Sags', in Proceeding IEEE-PES Winter meeting, vol. 2, pp. 1310-1315, 1999
  24. MATLAB Guide Toolbox. Retrieved from http://www.mathworks.com
  25. Cipcigan, L., Chindris, M., Rull, J., Rusu, A., Sumper, A., Ramirez, R., and Alves, R., 'Mitigation of Capacitor Bank Energization Harmonic Transients', presented at IEEEIPES Transmission & Distribution Conference- Labplan, 2006

피인용 문헌

  1. Development of Adaptive Reclosing Scheme Using Wavelet Transform of Neutral Line Current in Distribution System vol.44, pp.4, 2016, https://doi.org/10.1080/15325008.2015.1117165
  2. WPD for Detecting Disturbances in Presence of Noise in Smart Grid for PQ Monitoring vol.54, pp.1, 2018, https://doi.org/10.1109/TIA.2017.2753720
  3. Adaptive Wavelet Neural Network Based Wind Speed Forecasting Studies vol.9, pp.6, 2014, https://doi.org/10.5370/JEET.2014.9.6.1812
  4. Development of two indices based on discrete wavelet transform for transformer differential protection vol.22, pp.8, 2012, https://doi.org/10.1002/etep.626
  5. A hybrid algorithm for fast detection and classification of voltage disturbances in electric power systems vol.21, pp.1, 2011, https://doi.org/10.1002/etep.461