Synchronization of Chaotic Secure Communication Systems with Interval Time-varying Delays

구간 시변 지연이 존재하는 카오스 보안 통신시스템의 동기화

  • 권오민 (충북대학교 전기공학과) ;
  • 박주현 (영남대학교 전기공학과) ;
  • 이상문 (대구대학교 전자공학부) ;
  • 박명진 (충북대학교 전기공학과)
  • Published : 2009.06.01

Abstract

In this paper, a method of designing a controller which ensures the synchronization between the transmission and the reception ends of chaotic secure communication systems with interval time-varying delays is proposed. To increase communication security, the transmitted message is encrypted with the techniques of N-shift cipher and public key. And to reduce the conservatism of the stabilization criterion for error dynamic system obtained from the transmitter and receiver, a new Lyapunov-functional and bounding technique are proposed. Through a numerical example, the effectiveness of the proposed method is shown in the chaotic secure communication system.

Keywords

References

  1. M. Feki, 'An adaptive chaos synchronization scheme applied to secure communication', Chaos Solitons & Fractals, vol.18, pp.141-148, 2003 https://doi.org/10.1016/S0960-0779(02)00585-4
  2. Z. Li, D. Xu, 'A secure communication scheme using projective chaos synchronization', Chaos Solitons & Fractals, vol.22, pp.477-481, 2004 https://doi.org/10.1016/j.chaos.2004.02.019
  3. C.C. Wang, J.P. Su, 'A new adaptive variable structure control for chaotic synchronization and secure communication', Chaos Solitons & Fractals, vol.20, pp.967-977, 2004 https://doi.org/10.1016/j.chaos.2003.10.026
  4. T. Yang, e.W. Wu, L.O. Chua, 'Crptography based on chaotic system', LEEE Transactions on Circuits and Systems -I: Fundamental Theory and Applications, vol.44, pp.469-472, 1997 https://doi.org/10.1109/81.572346
  5. D. Li, Z. Wang, J. Zhou, J, Fang, J. Ni, 'A note on chaotic synchronization of time-delay secure commun.ication systems', Chaos Solitons & Fractals, vol.38, pp.1217-1224, 2008 https://doi.org/10.1016/j.chaos.2007.01.057
  6. J. Hale, and S.M.V. Lunel, Introduction to Functional Differential Equatins, Springer-Verlag, New York, 1993
  7. V.B. Kolmanovskii, and A. Myshkis, Applied Theory to Functional Differential Equations, Kluwer Academic Publishers, Boston, 1992
  8. J,H. Park, S. Won, 'Asymptotic stability of neutral systems with multiple delays', Journal of Optimization Theory and Applications, vol. 103, pp.187-200, 1999 https://doi.org/10.1023/A:1021781602182
  9. OM. Kwon, Ju H. Park, S.M. Lee, 'On stability criteria for uncertain delay-ifferential systems of neutral type with time-varying delays', Applied Mathematics and Computations, vol.l97, pp.864-873, 2008 https://doi.org/10.1016/j.amc.2007.08.048
  10. J, -H. Kim, 'Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty', IEEE Transactions on Automatic Control, vol.46, pp.789-792, 2001 https://doi.org/10.1109/9.920802
  11. J,-H. Kim, Y.-G. Yi, 'Delay-dependent robust stability of uncertain time-delayed linear systems', Trans. KIEE, 55D, pp.147-156, 2006
  12. O.M. Kwon, and J,H. Park, 'An improved delay-dependent robust control for uncertain time delay systems', IEEE Transactions on Automatic Control, vol. 49, No. 11, pp.1991-1995, 2004 https://doi.org/10.1109/TAC.2004.837563
  13. V.L. Kharitonov, S.-I. Niculescu, 'On the stability of linear systems with uncertain delay, IEEE Transactions on Automatic control, vol.48, pp.127-132, 2003 https://doi.org/10.1109/TAC.2002.806665
  14. D. Yue, C. Pang, G.Y. Tang, 'Guaranteed cost control of linear systems over networks with state and input quantisations', IEE Proceedings-Control Theory and Applications, vol.153, pp.658-664, 2006 https://doi.org/10.1049/ip-cta:20050294
  15. K. Gu, An integral inequality in the stability problem of time-delay systems, Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia, December, 2000 https://doi.org/10.1109/CDC.2000.914233
  16. S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, Philadelphia, SIAM, 1994