Ring-opening Polymerization of L-Lactide with Silica Supported Titanium Alkoxide Catalysts

  • Kim, Eon-Ah (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Shin, Eun-Woo (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Yoo, Ik-Keun (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Chung, Jin-Suk (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Hong, Youn-Jin (Department of Chemistry, Chungbuk National University) ;
  • Kim, Young-Jo (Department of Chemistry, Chungbuk National University)
  • Published : 2009.05.31

Abstract

$TiCl(O-i-Pr)_3/SiO_2$ and $Ti(O-i-Pr)_4/SiO_2$ were prepared by immobilizing chlorotitanium (IV) isopropoxide ($TiCl(O-i-Pr)_3$) and titanium (IV) isopropoxide ($Ti(O-i-Pr)_4$), to pretreated silica. The effect of the polymerization reaction conditions on the catalytic activity and characteristics of the resulting PLA were investigated. The catalytic conversion, molecular weight and polydispersity index (PDI) of the PLA produced on the titanium alkoxide supported catalysts increased proportionally with the reaction temperature. When the PLA was synthesized in bulk polymerization, the PLA produced with the supported catalysts had higher molecular weight than those with homogeneous catalysts. The melting temperature of the polymer produced with silica supported alkoxide catalysts was approximately $170-180^{\circ}C$.

Keywords

References

  1. D. J. Sawyer, Macromol. Symp., 201, 271 (2003)
  2. S. Jacobsen, H. G. Fritz, P. Dege, P. Dubiose, and R. Jrme, Ind. Crop. Prod., 11, 265 (2000) https://doi.org/10.1016/S0926-6690(99)00053-9
  3. H. T. Lee and D. S. Lee, Macromol. Res., 10, 359 (2002) https://doi.org/10.1007/BF03218330
  4. B. Y. Shin, G. S. Jo, K. S. Kang, T. J. Lee, B. S. Kim, S. I. Lee, and J. S. Song, Macromol. Res., 15, 291 (2007) https://doi.org/10.1007/BF03218790
  5. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1844 (2000)
  6. J. Lunt, Polym. Degrad. Stabil., 59, 145 (1998) https://doi.org/10.1016/S0141-3910(97)00148-1
  7. A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276/277, 1 (2000) https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  8. S. I. Moon and Y. Kimura, Polym. Int., 52, 299 (2003) https://doi.org/10.1002/pi.960
  9. D. K. Yoo, D. Kim, and D. S. Lee, Macromol. Res., 14, 510 (2006) https://doi.org/10.1007/BF03218717
  10. J. K. Lee, J. H. Ryou, W. K. Lee, C. Y. Park, S. B. Park, and S. K. Min, Macromol. Res., 11, 476 (2003) https://doi.org/10.1007/BF03218979
  11. B. J. O’keefe, M. A. Hillmyer, and W. B. Tolman, J. Chem. Soc., Dalton Trans., 2215 (2001)
  12. O. Dechy-Cabaret, B. Martin-Vaca, and D. Bourissou, Chem. Rev., 104, 6147 (2004) https://doi.org/10.1021/cr040002s
  13. T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc., 124, 1316 (2002) https://doi.org/10.1021/ja012052+
  14. P. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P. White, and D. J. Willams, J. Am. Chem. Soc., 126, 2688 (2004) https://doi.org/10.1021/ja038757o
  15. C. Chen, C. Huang, and B. Huang, Macromolecules, 37, 7968 (2004) https://doi.org/10.1021/ma0492014
  16. A. Kowalski, A. Duda, and S. Penczek, Macromolecules, 31, 2114 (1998) https://doi.org/10.1021/ma971737k
  17. G. Montaudo, M. S. Montaudo, C. Puglisi, F. Samperi, N. Spassky, A. LeBorgne, and M. Wisniewski, Macromolecules, 29, 6461 (1996) https://doi.org/10.1021/ma960538i
  18. A. P. Dove, H. Li, R. C. Pratt, B. G. G. Lohmeijer, D. A. Culkin, R. H. Waymouth, and J. L. Hendrick, Chem. Commun., 2881 (2006)
  19. M. Cheng, A. B. Attygalle, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc., 121, 11583 (1999) https://doi.org/10.1021/ja992678o
  20. A. D. Dove, V. C. Gibson, E. L. Marchall, H. S. Rzepa, A. J. P. White, and D. J. Willams, J. Am. Chem. Soc., 128, 9834 (2006) https://doi.org/10.1021/ja061400a
  21. A. D. Dove, V. C. Gibson, E. L. Marchall, H. S. Rzepa, A. J. P. White, and D. J. Willams, Chem. Commun., 283 (2001)
  22. Y. Kim, G. K. Jnaneshwara, and J. G. Verkade, Inorg. Chem., 42, 1437 (2003) https://doi.org/10.1021/ic026139n
  23. S. Mun, J. Lee, S. H. Kim, Y. Hong, Y. Ko, Y. K. Shim, J. H. Lim, C. S. Hong, Y. Do, and Y. Kim, J. Organomet. Chem., 692, 3519 (2007) https://doi.org/10.1016/j.jorganchem.2007.04.031
  24. Y. Takashima, Y. Nakayama, K. Watanabe, T. Itono, N. Ueyama, A. Nakamura, H. Yasuda, and A. Harada, Macromolecules, 35, 7538 (2002) https://doi.org/10.1021/ma0204711
  25. J. T. Richardson, Principles of catalyst development, Plenum Press, New York and London, 1989, pp 108-117
  26. J. M. Fraile, J. I. García, J. A. Mayoral, and E. Vispe, J. Catal., 233, 90 (2005) https://doi.org/10.1016/j.jcat.2005.04.018
  27. J. Ejfler, M. Kobyka, L. B. Jerzykiewicz, and P. Sobota, J. Mol. Catal. A-Chem., 257, 105 (2006) https://doi.org/10.1016/j.molcata.2006.04.063
  28. K. Y. Choi, J. S. Chung, B. G. Woo, and M. H. Hong, J. Appl. Polym. Sci., 88, 2132 (2003) https://doi.org/10.1002/app.11968