PCL/PCL-g-PEG 생분해성 블렌드에서 그래프트 공중합체의 조성에 따른 상용성의 영향

Effect of Graft Copolymer Composition on the Compatibility of Biodegradable PCL/PCL-g-PEG Blend

  • Cho, Kuk-Young (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Ki-Seok (Department of Mechanical Engineering & Automotive Engineering, Kongju National University) ;
  • Park, Jung-Ki (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2009.05.25

Abstract

의료용으로 적용될 수 있는 새로운 재료를 제조하기 위하여 폴리카프로락톤(PCL)과 양친성 구조를 갖는 폴리(에틸렌 글리콜)(PEG)이 그래프트된 PCL을 이용하여 생분해성 블렌드를 제조하였다. 제조된 블렌드는 PCL을 기본으로 하고 여기에 그래프트 공중합체의 함량을 변화시키며 열적 그리고 결정화 특성을 관찰하였다. 그래프트 공중합체의 함량 변화에 따라 결정화 온도의 변화 및 결정화 속도가 변화하였고 이를 통해 그래프트 공중합체가 PCL의 결정화 거동에 영향을 미침을 확인하였다. 이는 광학현미경을 통한 결정의 교대 소광 밴드의 관찰을 통하여서도 확인할 수 있었다. 약물방출시스템과 같은 의료용 응용을 고려하여 블렌드 필름의 흡수거동과 단백질 흡착에 대한 특성도 평가하였다.

Blend films based on the poly($\varepsilon$-caprolactone) (PCL) and amphiphilic biodegradable polymer, poly(ethylene glycol) grafted poly($\varepsilon$-caprolactone) (PCL-g- PEG), were prepared with different blend ratios in order to develop new biomedical material. PCL was the main component in the blend. The miscibility and characteristics of the blends were investigated. The crystallization temperature of the blend shifted to high temperatures with an increase of the graft copolymer contents when the homopolymer PCL was the main component of the blend. The PEG side chain in the blend affected the crystallization rate of the PCL crystals in the blend and alternating extinction bands were observed by optical microscopy. The protein adhesion behavior of the film was influenced by the water uptake of the film.

Keywords

References

  1. H. Sun, L. Mei, C. Song, X. Cui, and P. Wang, Biomaterials, 27, 1735 (2006) https://doi.org/10.1016/j.biomaterials.2005.09.019
  2. C. G. Pitt, F. I. Chasalow, Y. M. Hibionada, D. M. Klimas, and A. Schindler, J. Appl. Polym. Sci., 26, 3779 (1981) https://doi.org/10.1002/app.1981.070261124
  3. D. R. Chen, J. Z. Bei, and S. G. Wang, Polym. Degrad. Stabil., 67, 455 (2000) https://doi.org/10.1016/S0141-3910(99)00145-7
  4. C. J. Goodwin, M. Braden, S. Downes, and N. J. Marshall, J. Biomed. Mater. Res., 40, 204 (1998) https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<204::AID-JBM5>3.0.CO;2-P
  5. H. Hyun, J. H. Lee, K. S. Seo, M. S. Kim, J. M. Rhee, H. B. Lee, and G. Kang, Polymer(Korea), 29, 468 (2005)
  6. S. J. Park, K. S. Kim, B. G. Min, and S. K. Hong, Polymer (Korea), 28, 103 (2004)
  7. R. Shogren, J. Polym. Environ., 5, 91 (1997) https://doi.org/10.1007/BF02763592
  8. C. X. Song, H. F. Sun, and X. D. Feng, Polym. J., 19, 485 (1987) https://doi.org/10.1295/polymj.19.485
  9. E. J. Choi, C. H. Kim, and J. K. Park, Macromolecules, 32, 7402 (1999) https://doi.org/10.1021/ma981453f
  10. C. H. Kim, K. Y. Cho, and J. K. Park, Polymer, 42, 5135 (2001) https://doi.org/10.1016/S0032-3861(01)00013-1
  11. J. M. Harris, Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Press, New York, 1992
  12. Y. Min, S. Lee, J. K. Park, K. Y. Cho, and S. J. Sung, Macromol. Res., 16, 231 (2008) https://doi.org/10.1007/BF03218858
  13. J. H. You, S. W. Choi, J. H. Kim, and Y. T. Kwak, Macromol. Res., 16, 609 (2008) https://doi.org/10.1007/BF03218568
  14. K. Y. Cho and J. K. Park, Polym. Bull., 57, 849 (2006) https://doi.org/10.1007/s00289-006-0658-4
  15. J. Rieger, P. Dubois, R. Jerome, and C. Jerome, Langmuir, 22, 7471 (2006) https://doi.org/10.1021/la0602261
  16. B. Bogdanov, A. Vidts, E. Schacht, and H. Berghmans, Macromolecules, 32, 726 (1999) https://doi.org/10.1021/ma980226a
  17. T. Shiomi, K. Imai, K. Takenaka, H. Takeshita, H. Hayashi, and Y. Tezuka, Polymer, 42, 3233 (2001) https://doi.org/10.1016/S0032-3861(00)00597-8
  18. B. Ronneberger, W. J. Kao, J. M. Anderson, and T. Kissel, J. Biomed. Mater. Res., 30, 31 (1996) https://doi.org/10.1002/(SICI)1097-4636(199601)30:1<31::AID-JBM5>3.0.CO;2-S
  19. T. P. Johnston and S. C. Miller, J. Parenter. Sci. Technol., 43, 279 (1989)
  20. J. H. Lee, J. Kopecek, and J. D. Andrade, J. Biomed. Mater. Res., 23, 351 (1989) https://doi.org/10.1002/jbm.820230306
  21. J. H. Lee, Y. M. Ju, W. K. Lee, K. D. Park, and Y. H. Kim, J. Biomed. Mater. Res., 40, 314 (1998) https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<314::AID-JBM17>3.0.CO;2-L
  22. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, Polymer, 37, 5849 (1996) https://doi.org/10.1016/S0032-3861(96)00455-7
  23. V. Crescenzi, G. Manzini, G. Calzolari, and C. Borri, Eur. Polym. J., 8, 449 (1972) https://doi.org/10.1016/0014-3057(72)90109-7
  24. Y. Chatani, Y. Okita, H. Tadokoro, and Y. Yamashita, Polym. J., 1, 555 (1970) https://doi.org/10.1295/polymj.1.555
  25. S. Nojima, K. Watanabe, Z. Zheng, and T. Ashida, Polym. J., 20, 823 (1988) https://doi.org/10.1295/polymj.20.823
  26. S. L. Copper and N. A. Peppas, Biomaterials: Interfacial Phenomena and Applications. ACS Press, Washington DC, 1982
  27. E. Ruckenstein and J. H. Chen, J. Adhes. Sci. Technol., 6, 611 (1992) https://doi.org/10.1163/156856192X00999
  28. S. M. Butler, M. A. Tracy, and R. D. Tilton, J. Control. Release, 58, 335 (1999) https://doi.org/10.1016/S0168-3659(98)00173-4
  29. J. H. Jeong, D. W. Lim, D. K. Han, and T. G. Park, Colloid. Surface B, 18, 371 (2000) https://doi.org/10.1016/S0927-7765(99)00162-9