An Efficient Contact Detection Algorithm for Contact Problems with the Boundary Element Method

경계요소법을 이용한 접촉해석의 효율적인 접촉면 검출기법

  • 김문겸 (연세대학교 사회환경시스템공학부) ;
  • 윤익중 (연세대학교 사회환경시스템공학부)
  • Received : 2009.06.08
  • Accepted : 2009.07.08
  • Published : 2009.10.30

Abstract

This paper presents an efficient contact detection algorithm for the plane elastostatic contact problem of the boundary element method(BEM). The data structures of the boundary element method are dissected to develop an efficient contact detection algorithm. This algorithm is consists of three parts as global searching, local searching and contact relation setting to reflect the corner node problem. Contact master and slave type elements are used in global searching step and quad-tree is selected as the spatial decomposition method in local searching step. To set up contact relation equations, global contact searching is conducted at node level and local searching is performed at element level. To verify the efficiency of the proposed contact detection algorithm of BEM, numerical example is presented.

본 논문에서는 경계요소법의 평면 접촉해석에 사용될 수 있는 효율적인 접촉면 검출 알고리즘을 제시하였다. 접촉면 검출 알고리즘을 경계요소법에 적용하기 위하여, 경계요소법이 가지는 자료구조를 분석하였다. 경계요소법의 특징 중 하나인 모퉁이 문제를 고려하여 전역검색, 지역검색, 접촉관계식 설정의 3단계로 접촉면 검출기법을 구현하였다. 전역검색은 접촉 주요소, 부요소 개념을 도입하였으며, 지역검색에 있어서는 공간분할기법인 사지트리를 이용하였다. 접촉관계식의 설정을 위하여 요소수준에서 절점의 접촉여부를 검토하고 최종계의 방정식에 구속조건을 할당하도록 하였다. 제시된 알고리즘을 이용한 프로그램의 정확성과 효율성을 입증하기 위하여 수치해석을 실시하여 결과를 비교하였다.

Keywords

References

  1. 김용언, 류한열, 신의섭 (2007) 영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토, 한국전산구조공학회논문집, 20(4), pp.469-476
  2. 이기수, 김방원 (2000) 접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석, 한국전산구조공학회 논문집, 13(3), pp.305-319
  3. Andersson, T., Frederiksson, B., Persson, B.G.A. (1980) The boundary element method applied to two-dimensional contact problems, in:C. A. Brebbia(Ed.), Proceedings of the 2nd International Seminar on Recent Advances in BEM, Southampton:CML Publications, pp.247-263
  4. Brebbia, C.A., Dominguez, J. (1992) Boundary elements, an introductory course. 2nd ed, New York:McGraw-Hill
  5. Dassault systems simulia corp. (2007), Abaqus 6.7 User’ manual
  6. Forrest, A. (1971) Computational geometry, series 4, Royal Society London
  7. Gao, X.W., Davies, T.G. (2000) 3D multi-region BEM with corners and edges, International journal of Solids and Structures, 37, pp.1549-1560 https://doi.org/10.1016/S0020-7683(98)00276-5
  8. Graham, S.L., Kessler, P.B., Mckusick, M.K. (1982) Gprof:A call graph execution profiler, in:SIGPLAN '2:Proceedings of the 1982 SIGPLAN symposium on Compiler construction, ACM, New York, NY, USA https://doi.org/10.1145/872726.806987
  9. Greco,M., CodaH. B., Venturini, W.S. (2004) An alternative contact/impact identification algorithm for 2d structural problems, Computational Mechanics, 34, pp.410-422 https://doi.org/10.1007/s00466-004-0586-9
  10. Hertz, H. (1896) Miscellaneous papers on the contact of elastic solids, Trans-lated by D.E. Jones, MacMillan:London
  11. Johnson, K.L. (1985) Contact mechanics, Cambridge University Press
  12. Karami, G. (1989) A boundary element method for two-dimensional contact problems, Springer-Verlag
  13. KEUM, B., LIU, Y. (2005) Analysis of 3-D frictional contact mechanics problems by a boundary element method, Tsinghua Science and Technology, 10, pp.16-29 https://doi.org/10.1016/S1007-0214(05)70004-3
  14. Olukoko, O.A., Becker, A.A. (1993) A new boundary element approach for con-tact problems with friction, International Journal for Numerical Methods in Engineering, 36, pp.2625-2642 https://doi.org/10.1002/nme.1620361508
  15. Paris, F., Blazquez, A., Canas J. (1995) Contact problems with nonconforming discretization using boundary element method, Computers & Structures, 57, pp.829-839 https://doi.org/10.1016/0045-7949(95)92007-5
  16. Zhong, Z.H., Nilsson, L. (1996) A unified contact algorithm based on the territory concept, Computer methods in applied mechanics and engineering, 130, pp.1-6 https://doi.org/10.1016/0045-7825(95)00886-1