수위의 구속조건을 고려한 LCVA의 최적형상

Optimal Shape of LCVA considering Constraints on Liquid Level

  • 투고 : 2009.06.01
  • 심사 : 2009.08.27
  • 발행 : 2009.10.30

초록

본 연구에서는 수평관과 수직관의 단면이 다른 액체기둥흡진기(LCVA)의 제진효과를 극대화하기 위한 최적형상을 수치 해석에 의한 변수연구를 통해 찾았다. 특정 진동수에 동조되고, 동일한 총질량을 가지면서 치수 및 수위와 관련된 구속조건을 만족하는 다양한 형상의 LCVA를 설계하고, 이 가운데 가장 큰 등가감쇠비를 획득하는 형상을 찾았다. 그 결과 LCVA 형상의 설계에서 수위변동폭이 최적형상을 결정하는 중요한 구속조건 역할을 한다는 것을 확인하였다. 유체가 운동하는 평면과 직교하는 방향의 LCVA 수평폭을 증가시킬수록 등가감쇠비가 증가하였으며, 증가율은 점차 둔화되는 것으로 나타나 적정 수평폭의 결정이 중요한 것으로 나타났다.

This study addresses the optimal shape of a LCVA maximizing its vibration control effect through numerical parametric study. Various LCVAs having the same total mass and tuning frequency are designed with constraints on the dimensions and water level, and one obtaining the highest equivalent damping ratio of the controlled system is chosen as an optimal solution. As a result, it was found that the limit on the variation of the water level in the vertical liquid column plays an important role constraining the shape of the LCVA. As the LCVA width perpendicular to the plane of liquid motion increases, the equivalent damping ratio rises with slowdown so that determination of the proper width is important in design of the LCVA shape.

키워드

참고문헌

  1. 김홍진, 김현배, 조지성, 이상현, 우성식, 최기영 (2006) LCVA를 이용한 초고층건물의 풍진동 제어성능 실험평가, 대한건축학회 학술발표대회 논문집, 26(1), pp.13-16
  2. 유기표 (2005) TLD와 TLCD의 진동성능실험, 대한건축학회논문집 구조계, 21(5), pp.19-26
  3. 유기표, 유장열, 송창현, 김영문 (2009), 동조액주관댐퍼의 가진진폭별 오리피스감쇠특성에 대한 연구, 대한건축학회논문집 구조계, 25(6), pp.41-48
  4. 이성경, 민경원, 정희산 (2009), 전달함수를 이용한 LCVA의 설계변수 분석, 한국지진공학회 논문집, 13(4), pp.47-55 https://doi.org/10.5000/EESK.2009.13.4.047
  5. Chang, C.C., Hsu, C.T. (1998) Control Performance of Liquid Column Vibration Absorbers, Engineering Structures, 20(7), pp.580-586 https://doi.org/10.1016/S0141-0296(97)00062-X
  6. Chang, C.C., Qu, W.L. (1998) Unified Dynamic Absorber Design Formulas for Wind-indeuced Vibration Control of Tall Buildings, Struct. Design Tall Building, 7, pp.147-166 https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<147::AID-TAL107>3.0.CO;2-3
  7. Davenport, A.G. (1964) Note on the distribution of the largest value of a random function with application to gust loading, Proceedings of the Institution of Civil Engineers London, 28, pp.187 -96 https://doi.org/10.1680/iicep.1964.10112
  8. Gao, H., Kwok, K.C.S., Samali, B. (1997) Optimization of Tuned Liquid Column Dampers, Engineering Structures, 19(6), pp.476-486 https://doi.org/10.1016/S0141-0296(96)00099-5
  9. Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D., Samali, B. (1997) Characteristics of liquid column vibration absorbers(LCVA)–I, Engineering Structures, 19(2), pp.156-134 https://doi.org/10.1016/S0141-0296(96)00042-9
  10. Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D., Samali, B. (1997) Characteristics of liquid column vibration absorbers(LCVA)–II, Engineering Structures, 19(2), pp.135-144 https://doi.org/10.1016/S0141-0296(96)00044-2
  11. Min, K.W., Kim, H.S., Lee, S.H., Kim, H., Ahn, A.K. (2005) Performance Evaluation of Tuned Liquid Column Dampers for Response Control of a 76-story Benchmark Building, Engineering Structures, 27, pp.1101-1112 https://doi.org/10.1016/j.engstruct.2005.02.008
  12. Soong, T.T., Dargush, G.F. (1997) Passive Energy Dissipation Systems in Structural Engineering, John Wiley and Sons, USA, pp.356
  13. Watkins, R.D. (1991) Test on Various Arrangements of Liquid Column Vibration Absorbers, Research Report R639, School of Civil and Mining Engineering, University of Sydney
  14. Xu, Y.L,, Shum, K.M. (2003) Multiple-tuned Liquid Column Dampers for Torsional Vibration Control of Structures:Theoretical Investigation, Earthquake Engineering and Structural Dynamics, 32, pp.309-328 https://doi.org/10.1002/eqe.227
  15. Yang, J.N., Agrawal, A.K., Samali, B., Wu, J.C. (2004) Benchmark Problem for Response Control of Wind-Excited Tall Buildings, Journal of Mechanics, pp.437-446 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(437)
  16. Yalla S.K., Kareem, A. (2000) Optimum Absorber Parameters for Tuned Liquid Column Dampers, Journal of Structural Engineering, pp.906-915 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(906)