References
- J. Aubin, Set-valued analysis, Birkause, Boston, 1990
- R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., vol.12, pp.1-12, 1965 https://doi.org/10.1016/0022-247X(65)90049-1
- G. Choquet, Theory of capacity, Annales de Institut Fourier, vol.5, pp.131-295, 1953
- E. Groes, H.J. Jacobsen, B. Sloth, and T. Tranaes, Axiomatic characterizations of the Choquet integral, Econom. Theory, vol.12, no.2 pp.441-448, 1998 https://doi.org/10.1007/s001990050230
- L. C. Jang, B.M. Kil, Y.K. Kim and J. S. Kwon, Some properties of Choquet integrals of set-valued functions, Fuzzy Sets and Systems, vol.91, pp.95-98, 1997 https://doi.org/10.1016/S0165-0114(96)00124-8
- L. C. Jang and J. S. Kwon, On the representation of Choquet integrals of set-valued functions and null sets, Fuzzy Sets and Systems, vol.112 pp.233-239, 2000 https://doi.org/10.1016/S0165-0114(98)00184-5
- L.C. Jang, Interval-valued Choquet integrals and their applications, J. of Applied Mathematics and computing, vol.16, no.1-2, 2004 https://doi.org/10.1007/BF02936147
- L.C. Jang, Some characterizations of interval-valued Choquet price functionals, J. of Fuzzy Logic and Intelligent Systems, vol.16, no. 2, pp.247-251, 2006 https://doi.org/10.5391/JKIIS.2006.16.2.247
- L.C. Jang, Interval-valued Choquet integrals and applications in pricing risks, J. of Fuzzy Logic and Intelligent Systems, vol.17, no. 4, pp.451-454, 2007 https://doi.org/10.5391/JKIIS.2007.17.4.451
- T. Murofushi and M. Sugeno, A theory of Fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. and Appl., Vol.159, pp.532-549, 1991 https://doi.org/10.1016/0022-247X(91)90213-J
- Yann Rebille, Decision making over necessity measures through the Choquet integral criterion, Fuzzy Sets and Systems, vol.157, pp.3025-3039, 2006 https://doi.org/10.1016/j.fss.2006.06.001
- D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. vol.97, no.2, pp.225-261, 1986
- D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica vol.57, pp.571-587, 1989 https://doi.org/10.2307/1911053
- L.A. Zadeh, Fuzzy sets as a basic for a theory of possibility, Fuzzy Sets and Systems, vol.1, pp.3-28, 1978 https://doi.org/10.1016/0165-0114(78)90029-5