쇼케이 적분과 구간치 필요측도

Choquet integrals and interval-valued necessity measures

장이채¹ · 김태균² Lee-Chae Jang and Tae-Kyun Kim

¹건국대학교 전산수학과

Dept of Mathematics and Computer Science, Konkuk University ²광운대학교 교양학부

Division of General Education, Kwangwoon University

요 약

Y. Réballé [11]교수는 쇼케이적분 기준에 의한 필요측도의 표현에 관해 조사한다. 또한 쇼케이적분 표현관 관련된 필요측 도의 순위를 결정 연장을 생각한다. 이 논문에서, 우리는 결정연장이 쇼케이 기대효용에 따른 애매한(구간치로 명명함) 필 요측도를 가지는 경우를 생각한다. 더욱이, 구간치 필요측도에 대한 단조 집합치 함수를 갖는 기호에 대한 약 쇼케이적분 표현과 필요측도에 대한 구간치 효용함수를 갖는 기호에 대한 강 쇼케이적분 표현에 대한 두 가지 정리를 증명한다.

Abstract

Y. Réballé [11] discussed the representation of necessity measure through the Choquet integral criterian. He also consider a decision maker who ranks necessity measures related with Choquet integral representation. In this paper, we consider a decision maker have an "ambiguity" (say, interval-valued) necessity measure according to their Choquet's expected utility. Furthermore, we prove two theorems which are weak Choquet integral representation of preferences with a monotone set function for interval-valued necessity measures and strong Choquet integral representation of preferences with an interval-valued utility function for necessity measures.

Key Words: non-additive measures, necessity measures, interval-valued necessity measures, Choquet integrals.

1. Introduction

In a previous work [11], the author investigated the representation of necessity measure through the Choquet integral criterian. We note that G. Choquet (1953, [3]) first have studied Choquet integrals and Murofush and Sugeno [10] have been studied Choquet integrals with respect to a fuzzy measure. Choquet integrals allow to define the utility and a risk measure of a measurable function, for example, a bounded random payment and an utility function.

Motivation of this paper is that a decision maker have interval-valued necessity measures according to their Choquet's expected utility. The concept of interval-valued Choquet integral are useful tools in order to get numerous applications, for examples, mathematical economics, information theory, expected utility theory, and risk analysis (see [5-8]).

In this paper, by using Choquet integrals with respected to an interval-valued necessity measure, we discuss two theorems which are weak Choquet integral

representation of preferences with a monotone set function for interval-valued necessity measures and strong Choquet integral representation of preferences with an interval-valued utility function for necessity measures.

2. Definitions and Preliminaries

In this section we list the set-theoretical arithmetic operations on the set of subintervals of an unit interval I=[0,1] in \mathbb{R} . We denote [I] by

$$[I] = \{\bar{a} = [a^-, a^+] \mid a^-, a^+ \in I \text{ and } a^- \le a^+\}.$$

For any $a \in I$, we define a = [a, a]. Obviously, $a \in [I]$.

Definition 2.1 ([7-9]) If $\bar{a}, \bar{b} \in [I], k \in I$, then we define

- (1) $\overline{a} + \overline{b} = [a^- + b^-, a^+ + b^+],$
- (2) $k \bar{a} = [ka^-, ka^+],$
- (3) $\overline{a} \wedge \overline{b} = [a^- \wedge b^-, a^+ \wedge b^+],$
- (4) $\overline{a} \vee \overline{b} = [a^- \vee b^-, a^+ \vee b^+],$
- (5) $\overline{a} \le \overline{b}$ if and only if $a^- \le b^-$ and $a^+ \le b^+$,
- (6) $\overline{a} < \overline{b}$ if and only if $\overline{a} \le \overline{b}$ and $\overline{a} \ne \overline{b}$,
- (7) $\overline{a} \subset \overline{b}$ if and only if $\overline{b} \leq a^-$ and $a^+ \leq b^+$.

접수일자: 2009년 4월 6일 완료일자 : 2009년 6월 4일 **Definition 2.2** ([7-9]) A set function $d_H: [I] \times [I] \rightarrow [0, \infty]$ is called the Hasdorff metric if

$$d_H(A,B) = \max \{ \sup_{x \in A} \inf_{y \in B} |x - y|,$$

$$\sup_{y \in B} \inf_{x \in A} |x - y| \},$$

for all $A, B \in [I]$.

Theorem 2.3 ([7-9]) If $d_H: [I] \times [I] \rightarrow [0, \infty]$ is the Hausdorff metric, then for $\overline{a} = [a^-, a^+], \overline{b} = [b^-, b^+] \in [I]$

$$d_H(\bar{a},\bar{b}) = \max\{|a^- - b^-|, |a^+ - b^+|\}.$$

Let Ω be a non-empty set and $\mathfrak{I}(\Omega)$ a non-empty family of subsets of Ω . A function $X: \Omega \to I$ is said to be $\mathfrak{I}(\Omega)$ -measurable if for every $\alpha \in (0,1)$,

$$\{w \in \Omega \mid X(w) \ge \alpha\} \in \mathfrak{I}(\Omega).$$

Let $B(\Omega, \mathfrak{I}(\Omega))$ be the set of $\mathfrak{I}(\Omega)$ -measurable functions. We remark that $B(\Omega, \mathfrak{I}(\Omega))$ is not convex (see [11]). We also list non-additive measures, possibility measures, and necessity measures.

Definition 2.4 ([3, 7–9, 10–13]) A set function μ on $\Im(\Omega)$ is called a non–additive measure if $\mu(\varnothing) = 0$ and $\mu(A) \leq \mu(B)$ whenever $A,B \in \Im(\Omega)$ and $A \subset B$.

Definition 2.5 ([11, 14]) (1) A set function μ on $\Im(\Omega)$ is called a possibility measure if $\mu(\varnothing) = 0$ and $\mu(X) = 1$ and

$$\mu(\bigcup_i A_i) \le \max_i \mu(A_i)$$

for all collections $\{A_i\}\subset\mathfrak{I}(\Omega)$.

(2) A set function ν on $\Im(\Omega)$ is called a necessity measure if $\nu(A) = 1 - \mu(A^c)$ for all $A \in \Im(\Omega)$ and $A^c = \{w \in \Omega | w \not\in A\}$.

We note that every possibility measure and necessity measure is a non-additive measure. Let us discuss the following Choquet integral.

Definition 2.6 ([3, 7-9, 10-13]) Let μ be a non-additive measure on $\mathfrak{I}(\Omega)$ and $X \in B(\Omega, \mathfrak{I}(\Omega))$. The Choquet integral of X with respect to μ is defined by

$$(C) \int f d\mu = \int_{0}^{1} \mu_{X}(\alpha) \, d\alpha$$

where $\mu_X(\alpha) = \mu(\{w \in \Omega \mid X(w) > \alpha\})$ and the integrals on the right hand side are Lebesgue integral.

Definition 2.7 ([3, 7–9, 10–13]) Let $X, Y \in B(\Omega, \mathfrak{I}(\Omega))$. We say that X and Y are comonotonic, in symbol $X \sim Y$ if

$$X(w) < X(w') \Rightarrow Y(w) \le Y(w')$$

for all $w, w' \subseteq \Omega$.

3. Main results

In this section, we will denote the set of necessity measures on $\mathfrak{I}(\Omega)$ by $\mathrm{Nec}(\mathfrak{I}(\Omega))$ and the set of interval-valued necessity measures on $\mathfrak{I}(\Omega)$ by INec $(\mathfrak{I}(\Omega))$.

First, we list binary relations on $\operatorname{Nec}(\mathfrak{I}(\Omega))$ and $\operatorname{INec}(\mathfrak{I}(\Omega))$ and discuss weak Choquet integral representation of preferences with a monotone set function for interval-valued necessity measures.

Definition 3.1 ([11]) (1) A binary relation \gg on Nec $(\Im(\Omega))$ is said to be complete if for all $(v, w) \in \text{Nec}$ $(\Im(\Omega))^2$ we have $v \gg w$ or $w \gg v$.

- (2) A binary relation \geq on $\operatorname{Nec}(\mathfrak{I}(\Omega))$ is said to be transtive if for all $(u,v,w) \in \operatorname{Nec}(\mathfrak{I}(\Omega))^3$, whenever $u \geq v$ and $v \geq w$ we have $u \geq w$.
- (3) A weak order \geqslant on $\operatorname{Nec}(\mathfrak{I}(\Omega))$ is called a binary relation on $\operatorname{Nec}(\mathfrak{I}(\Omega))$ which is complete and transtive.

Note that we write v > w for v > w and not (w > v) and $v \sim w$ for v > w and w > v. A functional I: Nec $(\mathfrak{I}(\Omega)) \to I$ represents the binary relation > if and only if for all v, w in $\operatorname{Nec}(\mathfrak{I}(\Omega))$ it holds

$$v \geqslant w \iff I(v) \geq I(w)$$
.

We also state some axioms that the binary relation \geqslant may fufill.

(WO) ≥ is a weak order.

(MON) Monotonicity: $\forall v, w \text{ in } \text{Nec}(\mathfrak{I}(\Omega)),$

$$[v \ge w] \Leftrightarrow [v \ge w].$$

(AGR) Agreement: $\forall u, v, w$ in $\text{Nec}(\mathfrak{I}(\Omega))$, $\forall \alpha \in (0,1)$,

$$[u \sim w, v \sim w, u \sim v]$$

$$\Rightarrow [\alpha u + (1 - \alpha)w \sim \alpha v + (1 - \alpha)w].$$

(ARCH) \geqslant is Archimedean: $\forall v, w \text{ in } Nec(\mathfrak{I}(\Omega)),$

$$[v < w] \Rightarrow [\exists \alpha \in (0,1) \text{ s.t. } v < \alpha w + (1-\alpha)u_{\Omega}]$$

and

$$[\exists \alpha \in (0,1) \text{ s.t. } \alpha w + (1-\alpha)u_{\Omega} < v \le w]$$

$$\Rightarrow [\exists \alpha' \in (0,1) \text{ s.t. } \alpha' w + (1-\alpha')u_{\Omega} \le v].$$

where

$$\forall A \subset \Omega, u_{\Omega}(A) = \begin{cases} 1 & \text{if } A = \Omega, \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{ll} \text{(NDEG)} \; \geqslant \; \text{is} \; \; \text{not degenerate:} \\ & \exists \; v, w \; \; \text{in} \; \, \text{Nec}(\Im\left(\Omega\right)) \; \; \text{s.t.} \; \; v \geq w \text{.} \end{array}$$

We recall that $A^u = \{B | A \subset B \subset \Omega\}$ stands for the upset generated by A.

Theorem 3.3 ([11] Theorem 3.1) Let \geqslant be a binary re-

lation on Nec($\mathfrak{I}(\Omega)$). If \Rightarrow satisfies (WO), (MON), (AGR), (ARCH), and (NDEG), then there exists a monotone set function $\beta \colon B(\Omega,\mathfrak{I}(\Omega)) \to I$ such that for all $v, w \in \text{Nec}(\mathfrak{I}(\Omega))$,

$$v \geqslant w \Leftrightarrow (C) \int v d\beta \geq (C) \int w d\beta$$
.

Conversely, if the binary relation is representation by a Choquet integral with respect to a monotone set function $\beta \colon B(\Omega, \mathfrak{I}(\Omega)) \to I$ such that $\beta(\{\Omega\}) = 0$ and $\beta(\{w_1\}^u) = 1$ for some $w_1 \in \Omega$ then \Rightarrow satisfies (WO), (MON), (AGR), (ARCH), and (NDEG).

Secondly, we introduce further axiom in order to obtain strong Choquet integral representation of preferences with an interval-valued utility function for necessity measures.

(INCL) Inclusion: for all
$$A,B \in \mathfrak{I}(\Omega), \neq \emptyset$$
, $[u_A \geqslant u_B] \Rightarrow [u_{A \sqcup B} \sim u_B]$.

Theorem 3.4 ([11] Theorem 3.2) Let > be a binary relation on Nec($\mathfrak{I}(\Omega)$). If > satisfies (WO), (MON), (AGR), (ARCH), (NDEG), and (INCL), then there exists an utility function (which means normalized measurable function) $X: \Omega \rightarrow I$ such that for all $v, w \in \operatorname{Nec}(\mathfrak{I}(\Omega))$,

$$v \geqslant w \Leftrightarrow (C) \int X dv \geq (C) \int X dw$$
.

Conversely, if the binary relation is representation by Choquet integral of an utility function $X \colon \Omega {\longrightarrow} I$ then ${>}$ satisfies (WO), (MON), (AGR), (ARCH), (NDEG), and (INCL).

Definition 3.5 ([5–9]) An interval-valued set function $\overline{\mu} \colon \mathfrak{I}(\Omega) \to [\underline{I}]$ is a non-additive interval-valued measure if $\overline{\mu}(\varnothing) = \overline{0}$ and $\overline{\mu}(A) \leq \overline{\mu}(B)$, whenever $A,B \in \mathfrak{I}(\Omega)$ and $A \subset B$.

It is easily to see that for each $\overline{\mu}$, there are uniquely two non-additive measures μ^- and μ^+ on $\Im(\Omega)$ such that $\overline{\mu} = [\mu^-, \mu^+]$.

Definition 3.6 ([5–9]) (1) The Choquet integral with respect to $\overline{\mu} = [\mu^-, \mu^+]$ of $X \in B(\Omega, \mathfrak{I}(\Omega))$ is defined by

$$(C)\int Xd\overline{\mu} = [(C)\int Xd\mu^{-}, (C)\int Xd\mu^{+}].$$

(2) The Choquet integral with respect to a necessity measure $v \in \operatorname{Nec}(\mathfrak{I}(\Omega))$ of an interval-valued utility function $\overline{X} = [X^-, X^+]$ $(X^-, X^+ \in B(\Omega, \mathfrak{I}(\Omega)))$ is defined by

$$(C)\int \overline{X}dv = [(C)\int X^{-}dv, (C)\int X^{+}dv].$$

Now, we consider a binary relation \geqslant_i on INec $(\mathfrak{I}(\Omega))$ defined by

$$\overline{v} \geqslant i \overline{w} \iff v^- \geqslant w^- \text{ and } v^+ \geqslant w^+$$
 (3.1)

and list some axioms that the binary relation \geq_i may fufill.

Definition 3.7 (1) A binary relation \geqslant_i on $\operatorname{INec}(\mathfrak{I}(\Omega))$ is said to be complete if for all $(\overline{v}, \overline{w}) \in \operatorname{INec}(\mathfrak{I}(\Omega))^2$ we have $\overline{v} \geqslant_i \overline{w}$ or $\overline{w} \geqslant_i \overline{v}$.

- (2) A binary relation \geqslant_i on $\operatorname{INec}(\mathfrak{I}(\Omega))$ is said to be transtive if for all $(\overline{u},\overline{v},\overline{w})\in\operatorname{INec}(\mathfrak{I}(\Omega))^3$, whenever $\overline{u}\geqslant_i\overline{v}$ and $\overline{v}\geqslant_i\overline{w}$ we have $\overline{u}\geqslant\overline{w}$.
- (3) A weak order \geqslant_i on $\operatorname{INec}(\mathfrak{I}(\Omega))$ is called a binary relation on $\operatorname{INec}(\mathfrak{I}(\Omega))$ which is complete and transfive

Note that we write $\overline{v} >_i \overline{w}$ for $\overline{v} >_i \overline{w}$ and not $(\overline{w} >_i \overline{v})$ and $\overline{v} \sim \overline{w}$ for $\overline{v} >_i \overline{w}$ and $\overline{w} >_i \overline{v}$. A functional $\overline{I}: \operatorname{INec}(\mathfrak{I}(\Omega))$ (or $\operatorname{Nec}(\mathfrak{I}(\Omega))) \to [I]$ represents the binary relation $>_i$ if and only if for all $\overline{v}, \overline{w}$ in $\operatorname{INec}(\mathfrak{I}(\Omega))$ it holds

$$\overline{v} \geqslant_i \overline{w} \text{ (or } v \geqslant_i w) \Leftrightarrow \overline{I}(\overline{v}) \geq \overline{I}(\overline{w}) \text{ (or } \overline{I}(v) \geq \overline{I}(w)).$$

Similary, we can state some axioms that the binary relation \geqslant may fufill.

 $(WO)_i \geqslant_i$ is a weak order.

 $(MON)_i$ Monotonicity: $\forall \overline{v}, \overline{w}$ in $INec(\mathfrak{I}(\Omega))$,

 $[\overline{v} \ge \overline{w}] \Leftrightarrow [\overline{v} \geqslant_i \overline{w}].$

 $(AGR)_i$ Agreement: $\forall \overline{u}, \overline{v}, \overline{w}$ in $INec(\mathfrak{I}(\Omega))$,

$$\forall \alpha \in (0,1), \\ [\overline{u} \sim \overline{w}, \overline{v} \sim \overline{w}, \overline{u} \sim \overline{v}] \\ \Rightarrow [\alpha \overline{u} + (1-\alpha) \overline{w} \sim \alpha \overline{v} + (1-\alpha) \overline{w}].$$

 $(\mathsf{ARCH})_i \ \geqslant_i \ \mathsf{is} \ \mathsf{Archimedean} \ \forall \ \overline{v}, \overline{w} \ \mathsf{in} \ \mathsf{INec}(\mathfrak{I}(\Omega)),$

$$\begin{split} & [\overline{v} <_i \overline{w}] \implies [\exists \, \alpha \in (0,1) \quad \text{s.t.} \quad \overline{v} <_i \alpha \overline{w} + (1-\alpha) \overline{u_\Omega}] \\ & \text{and} \quad [\exists \, \alpha \in (0,1) \quad \text{s.t.} \quad \alpha \overline{w} + (1-\alpha) \overline{u_\Omega} <_i \overline{v} \leqslant_i \overline{w}] \\ & \Rightarrow \quad [\exists \, \alpha' \in (0,1) \quad \text{s.t.} \quad \alpha' \overline{w} + (1-\alpha') \overline{u_\Omega} \leqslant_i \overline{v}]. \end{split}$$

where $\forall A \subset \Omega, \overline{u_{\Omega}}(A) = [u_{\Omega}^-, u_{\Omega}^+].$

 $(NDEG)_i \gg_i is not degenerate:$

$$\exists \overline{v}, \overline{w} \text{ in } \operatorname{INec}(\mathfrak{I}(\Omega)) \text{ s.t. } \overline{v} >_i \overline{w}.$$

 $(INCL)_i$ Inclusion: for all $A, B \in \mathfrak{I}(\Omega), \neq \emptyset$,

$$[\overline{u_A} \geqslant_i \overline{u_B}] \Rightarrow [\overline{u_{A \sqcup B}} \sim_i \overline{u_B}].$$

From the definition of \geqslant_i , we note that $(A) \geqslant_i$ satisfies $(WO)_i$, $(MON)_i$, $(AGR)_i$, $(ARCH)_i$, and $(NDEG)_i$ if and only if \geqslant satisfies (WO), (MON), (AGR), (ARCH), and (NDEG) and that $(B) \geqslant_i$ satisfies $(WO)_i$, $(MON)_i$, $(AGR)_i$, $(ARCH)_i$, $(NDEG)_i$, and $(INCL)_i$ if and only if \geqslant satisfies (WO), (MON), (AGR), (ARCH), (NDEG), and (INCL).

Finally, we obtain the following two theorems which are weak Choquet integral representation of preferences with a monotone set function for interval-valued necessity measures and strong Choquet integral representation of preferences with an interval-valued utility function for necessity measures.

Theorem 3.8 Let \geqslant_i be a binary relation on INec $(\mathfrak{I}(\Omega))$. If \geqslant_i satisfies $(WO)_i$, $(MON)_i$, $(AGR)_i$, $(ARCH)_i$, and $(NDEG)_i$, then there exists a monotone set function $\beta \colon B(\Omega,\mathfrak{I}(\Omega)) \to I$ such that for all $\overline{v}, \overline{w} \in INec(\mathfrak{I}(\Omega))$,

$$\overline{v} \gg_i \overline{w} \iff (C) \int \overline{v} d\beta \ge (C) \int \overline{w} d\beta.$$

Conversely, if the binary relation is representation by a Choquet integral with respect to a monotone set function $\beta \colon B(\Omega, \mathfrak{I}(\Omega)) \to I$ such that $\beta(\{\Omega\}) = 0$ and $\beta(\{w_1\}^u) = 1$ for some $w_1 \in \Omega$ then \geqslant_i satisfies (WO) $_i$, (MON) $_i$, (AGR) $_i$, (ARCH) $_i$, and (NDEG) $_i$.

Proof. By (A), we have \geqslant satisfies (WO), (MON), (AGR), (ARCH), and (NDEG). By Theorem 3.3, there exists a monotone set function $\beta \colon B(\Omega, \mathfrak{I}(\Omega)) \to I$ such that for all $v, w \in \operatorname{Nec}(\mathfrak{I}(\Omega))$,

(C)
$$v \ge w \Leftrightarrow (C) \int v \, d\beta \ge (C) \int w \, d\beta.$$

By (C) and the definition of a binary relation \geq_i , we can obtain

$$\overline{v} \geqslant_{i} \overline{w} \iff (C) \int v^{-} d\beta \ge (C) \int w^{-} d\beta \text{ and}$$

$$(C) \int v^{-} d\beta \ge (C) \int w^{-} d\beta$$

$$\Leftrightarrow (C) \int \overline{v} d\beta = [(C) \int v^{-} d\beta, (C) \int v^{+} d\beta]$$

$$= [(C) \int w^{-} d\beta, (C) \int w^{+} d\beta] = (C) \int \overline{w} d\beta.$$

Conversely, if we define \geq_i by

$$\overline{v} \geqslant_i \overline{w} \iff (C) \int \overline{v} d\beta \ge (C) \int \overline{w} d\beta.$$

for some a monotone set function $\beta \colon B(\Omega,\mathfrak{I}(\Omega)) \to I$. By the definition of interval-valued Choquet integral(see [7,8,9]), it is clearly to see that \geqslant_i satisfies (WO)_i, (MON)_i, (AGR)_i, (ARCH)_i, and (NDEG)_i.

We can consider a binary relation \geqslant_u with an interval-valued utility function like \geqslant_i as follows

$$v \geqslant_u w \Leftrightarrow (C) \int \overline{X} dv \ge (C) \int \overline{X} dw$$

and hence, by the same method of the proof in Theorem 3.8, we can obtain the following theorem.

Theorem 3.9 (1) Let \geqslant_u be a binary relation on INec $(\mathfrak{I}(\Omega))$. If \geqslant_u satisfies $(WO)_u$, $(MON)_u$, $(AGR)_u$, $(ARCH)_u$, and $(NDEG)_u$, then there exists an interval-valued function \overline{X} : $\Omega \rightarrow [I]$ such that for all $v,w \in Nec(\mathfrak{I}(\Omega))$,

$$v \geqslant_u w \Leftrightarrow (C) \int \overline{X} dv \ge (C) \int \overline{X} dw$$
.

Conversely, if the binary relation \geqslant_u is representation by a Choquet integral with an interval-valued utility function \overline{X} : $\Omega \rightarrow [I]$ as follows

$$v \geqslant_u w \Leftrightarrow (C) \int \overline{X} dv \ge (C) \int \overline{X} dw$$

then \geqslant_u satisfies $(WO)_u$, $(MON)_u$, $(AGR)_u$, $(ARCH)_u$, and $(NDEG)_u$.

References

- [1] J. Aubin, *Set-valued analysis*, Birkause, Boston, 1990.
- [2] R.J. Aumann, *Integrals of set-valued functions*, J. Math. Anal. Appl., vol.12, pp.1–12, 1965.
- [3] G. Choquet, *Theory of capacity*, Annales de Institut Fourier, vol.5, pp.131–295, 1953.
- [4] E. Groes, H.J. Jacobsen, B. Sloth, and T. Tranaes, *Axiomatic characterizations of the Choquet integral*, Econom. Theory, vol.12, no.2 pp.441–448, 1998.
- [5] L. C. Jang, B.M. Kil, Y.K. Kim and J. S. Kwon, Some properties of Choquet integrals of set-valued functions, Fuzzy Sets and Systems, vol.91, pp.95-98, 1997.
- [6] L. C. Jang and J. S. Kwon, *On the representation of Choquet integrals of set-valued functions and null sets*, Fuzzy Sets and Systems, vol.112 pp.233-239, 2000.
- [7] L.C. Jang, *Interval-valued Choquet integrals and their applications*, J. of Applied Mathematics and computing, vol.16, no.1-2, 2004.
- [8] L.C. Jang, Some characterizations of interval-valued Choquet price functionals, J. of Fuzzy Logic and Intelligent Systems, vol.16, no. 2, pp.247–251, 2006.
- [9] L.C. Jang, Interval-valued Choquet integrals and applications in pricing risks, J. of Fuzzy Logic and Intelligent Systems, vol.17, no. 4, pp.451–454, 2007.
- [10] T. Murofushi and M. Sugeno, *A theory of Fuzzy measures: representations, the Choquet integral, and null sets,* J. Math. Anal. and Appl., Vol.159, pp.532–549, 1991.
- [11] Yann Rebille, *Decision making over necessity measures through the Choquet integral criterion*, Fuzzy Sets and Systems, vol.157, pp.3025–3039, 2006.
- [12] D. Schmeidler, *Integral representation without additivity*, Proc. Amer. Math. Soc. vol.97, no.2, pp.225–261, 1986.
- [13] D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica vol.57, pp.571–587, 1989.

[14] L.A. Zadeh, Fuzzy sets as a basic for a theory of possibility, Fuzzy Sets and Systems, vol.1, pp.3–28, 1978.

저 자 소 개

장이채(Lee Chae Jang)

1979년 2월 : 경북대 수학과(이학사)

1981년 2월:경북대 대학원 수학과(이학

석사)

1987년 2월: 경북대 대학원 수학과(이학

박사)

1987년 6월~1998년 6월:미국

Cincinnati대(교환교수)

1987년 3월~현재:건국대학교 컴퓨터응용과학부 전산수학 전공교수

관심분야: 함수해석학, 쇼케이적분, p-진 해석학

E-mail : leechae.jang@kku.ac.kr

김태균(Taekyun Kim)

1994년 3월: 규슈대학교(Kyushu Univ.) 이학 박사학위 취득 (수학: 수론).

1994년 4월~1998년 1월:경북대, 해군사 관학교, 경남대, 대진대, 강 사.

1999년 2월~2000년 2월: 민족사관고등학 교, 수학교사

2000년 3월~2000년 12월;캐나다 Simon Fraser Univ., CECM의 Visitor

2001년 4월~2006년 8월: 공주대학교 과학교육연구소, 연구 교수

2004년 3월~2007년 2월: 한남대학교 대학원(수학), 강사 2006년 8월~2008년 2월: 경북대학교 전자전기컴퓨터학부, 교수대우

2008년 3월~현재: 광운대학교 교양학부(수학), 부교수

1999년 1월~현재:Advanced Studies in Contemporary Mathematics 편집위원

2000년 1월~현재:Proceedings of the Jangjeon Mathematical Society 편집위원

1994년 6월: 章田수학회 및 章田수리물리 연구소 설립