Ultrastructural Differentiation of the Vacuole in Mesophyll Tissues of Orostachys

바위솔속 엽육조직 세포 내 액포의 미세구조 분화 양상

  • Kim, In-Sun (Biology Department, College of Natural Sciences, Keimyung University)
  • 김인선 (계명대학교 자연과학대학 생물학과)
  • Received : 2009.11.11
  • Accepted : 2009.12.24
  • Published : 2009.12.31

Abstract

In the present study, ultrastructural features of the mesophyll tissue have been investigated in Crassulacean acid metabolism (CAM)-performing succulent Orostachys. A large central vacuole and numerous small vacuoles in the peripheral cytoplasm were characterized at the subcellular level in both developing and mature mesophyll cells. The most notable feature was the invagination of vacuolar membranes into the secondary vacuoles or multivesicular bodies. In many cases, tens of single, membrane-bound secondary vacuoles of various sizes were found to be formed within the central vacuole. multivesicular bodies containing numerous small vesicles were also distributed in the cytoplasm but were better developed within the central vacuole. Occasionally, electron-dense prevacuolar compartments, directly attached to structures appearing to be small vacuoles, were also detected in the cytoplasm. One or more huge central vacuoles were frequently observed in cells undergoing differentiation and maturation. Consistent with the known occurrence of morphologically distinct vacuoles within different tissues, two types of vacuoles, one representing lytic vacuoles and the other, most likely protein storage vacuoles, were noted frequently within Orostachys mesophyll. The two types coexisted in mature vegetative cells but did not merge during the study. Nevertheless, the coexistence of two distinct vacuole types in maturing cells implies the presence of more than one mechanism for vacuolar solute sorting in these species. The vacuolar membrane is known to be unique among the intracellular compartments for having different channels and/or pumps to maintain its function. In CAM plants, the vacuole is a very important organelle that regulates malic acid diurnal fluctuation to a large extent. The membrane invagination seen in Orostachys mesophyll likely plays a significant role in survival under the physiological drought conditions in which these Orostachys occur; by increasing to such a large vacuolar volume, the mesophyll cells are able to retain enormous amounts of acid when needed. Furthermore, the mesophyll cells are able to attain their large sizes with less energy expenditure in order to regulate the large degree of diurnal fluctuation of organic acid that occurs within the vacuoles of Orostachys.

다육질성 CAM 식물에서는 구조와 기능의 분화가 환경조건에 잘 적응된 합리적인 광합성을 수행하여 동일한 엽육세포에서 $CO_2$ 고정, 유기물 합성과 저장, 분해 및 활용하는 시간이 서로 다르게 나타난다. 이러한 유기산 대사는 CAM 식물의 가장 뚜렷한 대사적 특징으로 밤에 말산을 합성하여 액포에 저장하고 낮에 이용하므로 이들의 액포는 급격한 pH의 차이를 일주기성으로 조절해야 하는 매우 중요한 세포소기관이다. 본 연구에서는 식물체 내 생리적 건조가 지속되어 CAM 광합성을 수행하는 바위솔속 식물 3종의 다육질성 엽육조직 세포의 특성을 액포 구조분화에 초점을 두어 미세구조적으로 연구하였다. 바위솔속의 다육질성 엽육조직은 수분저장성 세포들로 구성되어 있으며, 액포융합 등의 액포화현상과 액포 내 다양한 2차 액포형성이 현저한 구조적 특징이었다. 이들 액포는 매우 역동적이어서 분열하여 다수의 소액포를 형성하거나 소액포들의 융합으로 큰 액포를 형성하였고, 일부는 전자밀도가 높은 저장성 액포로 발달하였다. 이러한 액포화는 세포의 크기를 경제적이고 에너지 효율적으로 증가시키는 방식으로 대부분의 다육질성 CAM 식물에서 발달하며, 낮과 밤에 일주기성으로 반복되는 세포 내 pH 농도의 급격한 변화를 대처할 수 있게 한다. 또한, 막 함입에 의한 다양한 크기의 수많은 2차 액포 형성은 단 기간 내에 액포막의 용적을 증가시켜 이러한 목적을 충족시켜 주는데 일주기적으로 사용되는 매우 중요한 세포 내 구획이 된다. 액포의 신장으로 세포질은 세포벽 주변부위로 밀려나 얇은 층으로 국한되었으나, 이들 세포질 내에서도 엽록체와 미토콘드리아는 액포와 밀접하게 연관되어 분포하고, 세포 간에는 원형질연락사가 잘 발달하였다. 이러한 미세구조들의 발달은 다육질성 엽육세포가 일주기성으로 급변하는 세포 내 유기산 대사과정에 적응하기 위해 액포에서의 신속하고 원활한 대사물질의 수송이 이루어져야 하기 때문일 것으로 추정된다.

Keywords

References

  1. Andreev IM: Functions of the vacuole in higher plant cells. Russ J Plant Physiol 48 : 672-680, 2001 https://doi.org/10.1023/A:1016776523371
  2. Beers EP, Woffenden BJ, Zhao C: Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol Biol 44 :399-415, 2000 https://doi.org/10.1023/A:1026556928624
  3. Bethke PC, Jones RL: Vacuoles and prevacuolar compartments. Curr Opin Plant Biol 3 : 469-475, 2000 https://doi.org/10.1016/S1369-5266(00)00115-1
  4. Edwards GE, Dai Z, Cheng SH, Ku MSB: Factors affecting the induction of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum. In: Winter K, Smith JAC, eds, Crassulacean Acid Metabolism. pp. 119-134, Springer, Berlin, 1996
  5. Foyer CH: Photosynthesis. Wiley & Son, New York, pp. 175-196, 1984
  6. Gibson AC: The Anatomy of Succulence. In: Ting IP, Gibbs M, eds, Crassulacean Acid Metabolism, Proc. of the 5th Annual Symposium in Botany, pp. 1-17, 1982
  7. Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M: Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8 : 404-408, 2005 https://doi.org/10.1016/j.pbi.2005.05.016
  8. Hartwell J: The Circadian Clock in CAM Plants. In: Hall AJW, McWatters, eds, Endogenous Plant Rhythms, pp. 211-236, Blackwell Publishing, Oxford, 2005
  9. Jurgens G: Membrane trafficking in plants. Annu Rev Cell Dev Biol 20 : 481-504, 2004 https://doi.org/10.1146/annurev.cellbio.20.082503.103057
  10. Kim IS: Water storage cells in succulent Orostachys malacophyllus. Kor J Electron Microsc 26 : 457-463, 1996
  11. Kim IS, Fisher DG: Structural aspects of seven leaves of Portulaca growing in Hawaii. Can J Bot 68 : 1291-1306, 1990 https://doi.org/10.1139/b90-165
  12. Kim IS, Pak JH, Seo BB, Song SD: Foliar structure and mesophyll succulence in three Korean Orostachys species and its phylogenetic implications. Kor J Plant Taxon 25 : 209-229, 1995a https://doi.org/10.11110/kjpt.1995.25.4.209
  13. Kim IS, Pak JH, Seo BB, Song SD: Foliar ultrastructure of Korean Orostachys species. Kor J Electron Microsc 25 : 52-61, 1995b
  14. Kluge M, Brulfert J: Crassulacean Acid Metabolism in the Genus Kalanchoe: Ecological, Physiological and Biochemical Aspects. In: Winter K, Smith JAC, eds, Crassulacean Acid Metabolism, pp. 5-44, Springer, Berlin, 1996
  15. Lawlor DW: Photosynthesis: Molecular, Physiological and Environmental Process, 2nd ed., Longman Science & Technical, London, pp. 188-191, 1993
  16. Leegood RC, Walker RP: Regulation of the C4 pathway. In: Sage RW, Monson RK, eds, C4 Plant Biology, pp. 53-71, Academic Press, San Diego, 1999
  17. Marty F: Plant vacuoles. Plant Cell 11 : 587-600, 1999 https://doi.org/10.1105/tpc.11.4.587
  18. Neuhaus J, Rogers JC: Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38 : 127-144, 1998 https://doi.org/10.1023/A:1006032627036
  19. Paris N, Stanley CM, Jones RL, Rogers CJ: Plant cells contain two functionally distinct vacuolar compartments. Cell 85 : 563-572, 1996 https://doi.org/10.1016/S0092-8674(00)81256-8
  20. Park M, Kim SJ, Vitale A, Hwang I: Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species. Plant Physiol 134 : 625-639, 2004 https://doi.org/10.1104/pp.103.030635
  21. Smith JAC, Ingram J, Tsiantis MS, Barkla BJ, Bartholomew DM, Betty M, Pantoja O, Pennington AJ: Transport Across the Vacuolar Membrane in CAM Plants. In: Winter K, Smith JAC, eds, Crassulacean Acid Metabolism, pp. 53-71, Springer, Berlin, 1996
  22. Steudle E, Smith JAC, L$\ddot{u}$ttge U: Water-relation parameters of individual mesophyll cells of the Crassulacean Acid Metabolism plan, Kalanchoe daigremontiana. Plant Physiol 66 : 1155-1163, 1980 https://doi.org/10.1104/pp.66.6.1155
  23. Vitale A, Hinz G: Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10 : 316-323, 2005 https://doi.org/10.1016/j.tplants.2005.05.001
  24. Vitale A, Raikhel N: What do proteins need to reach different vacuoles? Trends Plant Sci 4 : 148-155, 1999
  25. Wright H, van Doorn WG, Gunawardena AHLAN: In vivo study of developmental programmed cell death using the lace plant (Aponogeton madagascariensis: Aponogetonaceae) leaf model system, Amer J Bot 96 : 865-876, 2009 https://doi.org/10.3732/ajb.0800343