Transit Frequency Optimization with Variable Demand Considering Transfer Delay

환승지체 및 가변수요를 고려한 대중교통 운행빈도 모형 개발

  • 유경상 (서울대학교 건설환경종합연구소) ;
  • 김동규 (서울대학교 건설환경공학부 BK21) ;
  • 전경수 (서울대학교 건설환경공학부)
  • Received : 2009.08.03
  • Accepted : 2009.11.10
  • Published : 2009.12.31

Abstract

We present a methodology for modeling and solving the transit frequency design problem with variable demand. The problem is described as a bi-level model based on a non-cooperative Stackelberg game. The upper-level operator problem is formulated as a non-linear optimization model to minimize net cost, which includes operating cost, travel cost and revenue, with fleet size and frequency constraints. The lower-level user problem is formulated as a capacity-constrained stochastic user equilibrium assignment model with variable demand, considering transfer delay between transit lines. An efficient algorithm is also presented for solving the proposed model. The upper-level model is solved by a gradient projection method, and the lower-level model is solved by an existing iterative balancing method. An application of the proposed model and algorithm is presented using a small test network. The results of this application show that the proposed algorithm converges well to an optimal point. The methodology of this study is expected to contribute to form a theoretical basis for diagnosing the problems of current transit systems and for improving its operational efficiency to increase the demand as well as the level of service.

본 논문에서는 기 운영되고 있는 도시부 대중교통을 대상으로 노선의 운행빈도 설계 문제의 모델링 및 해법 개발을 위한 방법론을 제시하였다. 개발된 운행빈도 모형은 이중구조 모형으로서 상위 운영자 모형은 이용 가능한 총 차량 대수제약과 최소/최대 운행빈도 제약 하에 비용과 수익을 모두 포함한 순비용을 최소화하는 비선형 최적화 모형이고, 하위 사용자 모형은 가변수요와 용량제약으로 인한 노선의 혼잡, 그리고 노선 간환승에 따른 지체를 고려한 확률적 사용자 평형수단/경로선택 모형이다. 모형의 해법으로는 상위 모형의 경우 목적함수의 그레디언트를 기반으로 하는 "그레디언트 투사 해법"을 제안하였고, 하위모형의 경우는 기존의 "반복조정해법"을 활용하였다. 또한, 구축된 모형과 해법을 소규모 예제네트워크에 적용하여 그 수렴성과 도출된 해를 분석하였다. 본 논문의 운행빈도 설계방법론은 노선의 운영 효율성을 진단 평가하고, 투입 차량대수 제약 하에 대중교통 운영 효율을 개선하는 방안을 마련하는 데 있어 이론적인 토대로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Avriel, M. (1976), 'Nonlinear Programming: Analysis and Methods.' Prentice-Hall, Englewood Cliffs, New Jersey
  2. Bell, M.G.H. (1995), 'Stochastic user equilibrium assignment in networks with queues.' Transportation Research Part B 29(2), pp.125-137 https://doi.org/10.1016/0191-2615(94)00030-4
  3. Ben-Akiva, M., and S.R. Lerman (1985), 'Discrete choice analysis: theory and application to travel demand.' MIT Press, Cambridge, MA
  4. Constantin, I., and M. Florian (1995), 'Optimizing frequencies in a transit network: a nonlinear bi-level programming approach.' International Transactions in Operational Research 2(2), pp.149-164 https://doi.org/10.1111/j.1475-3995.1995.tb00011.x
  5. De Cea, J., and E. Fern$\acute{a}$ndez (1993), 'Transit assignment for congested public transport systems: an equilibrium model.' Transportation Science 27(2), pp.133-147 https://doi.org/10.1287/trsc.27.2.133
  6. Fern$\acute{a}$ndez, E., J. De Cea, and R.H. Malbran (2008), 'Demand responsive urban public transport system design: methodology and application.' Transportation Research Part A 42(10), pp.951-972 https://doi.org/10.1016/j.tra.2007.12.008
  7. Fern$\acute{a}$ndez, E., and P. Marcotte (1992), 'Operators-users equilibrium model in a partially regulated transit system.' Transportation Science 26(2), pp.93-105 https://doi.org/10.1287/trsc.26.2.93
  8. Fisk, C.S. (1984), 'Game theory and transportation systems modeling.' Transportation Research Part B 18B, pp.301-313 https://doi.org/10.1016/0191-2615(84)90013-4
  9. Gao, Z.-Y., H.-J. Sun, and L.-L. Shan (2004), 'A continuous equilibrium network design model and algorithm for transit systems.' Transportation Research Part B 38(3), pp.235-250 https://doi.org/10.1016/S0191-2615(03)00011-0
  10. Lam, W.H.K., and J. Zhou (2000), 'Optimal fare structure for transit network with elastic demand.' Transportation Research Record 1733, pp.8-14 https://doi.org/10.3141/1733-02
  11. Lam, W.H.K., Z-.Y. Gao, K.S. Chan, and H. Yang (1999), 'A Stochastic user equilibrium assignment model for congested transit network.' Transportation Research Part B 33(5), pp.351-368 https://doi.org/10.1016/S0191-2615(98)00040-X
  12. LeBlanc, L.J. (1988), 'Transit system network design.' Transportation Research Part B 22(5), pp.383-390 https://doi.org/10.1016/0191-2615(88)90042-2
  13. Luenberger, D.G. (1973), 'Introduction to linear and nonlinear programming.' Addison-Wesley Publishing, Menlo Park, California
  14. Monyrath, K. (2006), 'Frequency design of bus transit in mixed urban transport network.' Tokyo Institute of Technology, Master's Thesis
  15. Spiess, H., and M. Florian (1989), 'Optimal strategies: a new assignment model for transit networks.' Transportation Research Part B 23B(2), pp.83-102 https://doi.org/10.1016/0191-2615(89)90034-9
  16. Zhou, J., W.H.K. Lam, and B.G. Heydecker (2005), 'The generalized Nash equilibrium model for oligopolistic transit market with elastic demand.' Transportation Research Part B 39(6), pp.519-544 https://doi.org/10.1016/j.trb.2004.07.003