Efficient Culture Method for Early Passage hESCs after Thawing

초기 계대 인간 배아줄기세포의 해동 후 효율적인 배양 방법

  • Baek, Jin-Ah (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Kim, Hee-Sun (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Seol, Hye-Won (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Seo, Jin (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Jung, Ju-Won (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Yoon, Bo-Ae (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Park, Yong-Bin (Central Research Institute, Sam Jin Pharm. Co. Ltd.) ;
  • Oh, Sun-Kyung (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Ku, Seung-Yup (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Kim, Seok-Hyun (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Choi, Young-Min (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Moon, Shin-Yong (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University)
  • 백진아 (서울대학교 의학연구원 인구의학연구소) ;
  • 김희선 (서울대학교 의학연구원 인구의학연구소) ;
  • 설혜원 (서울대학교 의학연구원 인구의학연구소) ;
  • 서진 (서울대학교 의학연구원 인구의학연구소) ;
  • 정주원 (서울대학교 의학연구원 인구의학연구소) ;
  • 윤보애 (서울대학교 의학연구원 인구의학연구소) ;
  • 박용빈 (삼진제약주식회사 중앙연구소) ;
  • 오선경 (서울대학교 의학연구원 인구의학연구소) ;
  • 구승엽 (서울대학교 의학연구원 인구의학연구소) ;
  • 김석현 (서울대학교 의학연구원 인구의학연구소) ;
  • 최영민 (서울대학교 의학연구원 인구의학연구소) ;
  • 문신용 (서울대학교 의학연구원 인구의학연구소)
  • Published : 2009.12.30

Abstract

Objective: Human embryonic stem cells (hESCs) have the capacity to differentiate into all of the cell types and therefore hold promise for cell therapeutic applications. In order to utilize this important potential of hESCs, enhancement of currently used technologies for handling and manipulating the cells is required. The cryopreservation of hESC colonies was successfully performed using the vitrification and slow freezing-rapid thawing method. However, most of the hESC colonies were showed extremely spontaneous differentiation after freezing and thawing. In this study, we were performed to rapidly collect of early passage hESCs, which was thawed and had high rate of spontaneously differentiation of SNUhES11 cell line. Methods: Four days after plating, partially spontaneously differentiated parts of hESC colony were cut off using finely drawn-out dissecting pipette, which is mechanical separation method. Results: After separating of spontaneously differentiated cells, we observed that removed parts were recovered by undifferentiated cells. Furthermore, mechanical separation method was more efficient for hESCs expansion after thawing when we repeated this method. The recovery rate after removing differentiated parts of hESC colonies were 55.0%, 74.5%, and 71.1% when we have applied this method to three passages. Conclusion: Mechanical separation method is highly effective for rapidly collecting and large volumes of undifferentiated cells after thawing of cryopreserved early passage hESCs.

목 적: 인간 배아줄기세포 (human embryonic stem cells; hESCs)는 미분화 상태로 무한 증식할 수 있는 자가 증식(self-renewal) 능력과 인체의 모든 세포로 분화할 수 있는 전분화능 (pluripotency)의 특징을 가진 세포로, 손상된 세포를 건강한 세포로 대체하고자 하는 세포치료 (cell therapy) 연구에 활용하기 위한 세포 공급원 (cell source)으로 제시되고 있다. 그러나 인간 배아줄기세포는 확립된 초기에 세포를 안정적으로 배양하고 유지하는 과정이 쉽지 않으며, 특히 동결보존되어 있던 세포를 해동한 후 배양할 때 자연 발생적 분화가 높기 때문에 세포주의 유지에 많은 어려움이 따른다. 본 연구에서는 동결보존되어 있던 초기 계대의 인간 배아줄기세포를 해동하여 다시 배양할 때 자연 발생적 분화 부분을 기계적 분리 방법으로 제거하여 미분화 상태의 세포를 보다 빠르게 확보하기 위한 효율적인 방법에 대해 알아보고자 하였다. 연구방법: 인간 배아줄기세포를 계대 배양한지 4일이 되는 날, 50% 이상의 자연 발생적 분화가 나타난 세포군에서 분화된 부분만을 절개용 유리 피펫 (drawn-out dissecting pasture pipette)을 사용하여 기계적인 방법으로 제거하였다. 이후 지속적으로 배양액을 교환해 주며 세포군의 제거된 부분을 7일째 되는 날까지 관찰하였다. 결 과: 기계적 분리 방법을 사용하여 인간 배아줄기세포의 자연 발생적인 분화 부분을 제거한 빈 공간에 미분화상태의 인간 배아줄기세포가 분열하여 채워지는 것을 관찰하였다. 또한, 이 실험 방법을 연속 두 번 적용하여 배양했을 때 미분화 세포로 회복되는 세포군의 비율이 조금 더 높아지는 것을 확인할 수 있었다. 결 론: 동결되어 있던 초기 계대 인간 배아줄기세포의 해동 후, 자연 발생적 분화에 의해 미분화 상태를 유지하는 세포의 수가 적어 계대를 유지 하기가 어려울 때 이와 같은 기계적 분리 방법을 사용하여 자연 발생적 분화 부분을 제거한 후 배양을 지속하는 것이 단기간 내에 미분화 상태를 유지하는 인간 배아줄기세포의 양적 확보를 위한 효율적인 방법이라고 사료된다.

Keywords

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-7 https://doi.org/10.1126/science.282.5391.1145
  2. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18: 399-404 https://doi.org/10.1038/74447
  3. Oh SK, Kim HS, Ahn HJ, Seol HW, Kim YY, Park YB, et al. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 2005; 23: 211-9 https://doi.org/10.1634/stemcells.2004-0122
  4. Kang SM, Cho MS, Seo H, Yoon CJ, Oh SK, Choi YM, et al. Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells 2007; 25: 419-24 https://doi.org/10.1634/stemcells.2005-0482
  5. Lavon N, Yanuka O, Benvenisty N. The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells 2006; 24: 1923-30 https://doi.org/10.1634/stemcells.2005-0397
  6. Passier R, Mummery C. Cardiomyocyte differentiation from embryonic and adult stem cells. Curr Opin Biotechnol 2005; 16: 498-502 https://doi.org/10.1016/j.copbio.2005.08.003
  7. Park YB, Kim YY, Oh SK, Chung SG, Ku SY, Kim SH, et al. Alterations of proliferative and differentiation potentials of human embryonic stem cells during long-term culture. Exp Mol Med 2008; 40: 98-108 https://doi.org/10.3858/emm.2008.40.1.98
  8. Rosler ES, Fisk GJ, Ares X, Irving J, Miura T, Rao MS, et al. Long-term culture of human embryonic stem cells in feederfree conditions. Dev Dyn 2004; 229: 259-74 https://doi.org/10.1002/dvdy.10430
  9. Ko JY, Park CH, Koh HC, Cho YH, Kyhm JH, Kim YS, et al. Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source of human dopamine neurons. J Neurochem 2007; 103: 1417-29 https://doi.org/10.1111/j.1471-4159.2007.04898.x
  10. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 2004; 22: 53-4 https://doi.org/10.1038/nbt922
  11. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 2007; 25: 207-15 https://doi.org/10.1038/nbt1285
  12. Lane M, Schoolcraft WB, Gardner DK. Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril 1999; 72: 1073-8 https://doi.org/10.1016/S0015-0282(99)00418-5
  13. Freshney RI. Culture of animal cells; a manual of basic technique. 5th ed. John Wiley and Sons Inc (NY): 255; 2005
  14. Li Y, Tan JC, Li LS. Comparison of three methods for cryopreservation of human embryonic stem cells. Fertil Steril 2008; Dec 22. [Epub ahead of print] https://doi.org/10.1016/j.fertnstert.2008.10.052
  15. Reubinoff BE, Pera MF, Vajta G, Trounson AO. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 2001; 16: 2187-94 https://doi.org/10.1093/humrep/16.10.2187
  16. Richards M, Fong CY, Tan S, Chan WK, Bongso A. An efficient and safe xeno-free cryopreservation merhod for the storage of human embryonic stem cells. Stem Cells 2004; 22: 779-89 https://doi.org/10.1634/stemcells.22-5-779
  17. Oh SK, Kim HS, Park YB, Seol HW, Kim YY, Cho MS, et al. Methods for expansion of human embryonic stem cells. Stem Cells 2005; 23: 605-9 https://doi.org/10.1634/stemcells.2004-0297
  18. Sathananthan H, Pera M, Trounson A. The fine structure of human embryonic stem cells. Reprod Biomed Online 2002; 4: 56-61 https://doi.org/10.1016/S1472-6483(10)61916-5
  19. Richards M, Tan SP, Tan JH, Chan WK, Bongso A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 2004; 22: 51-64 https://doi.org/10.1634/stemcells.22-1-51
  20. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271-8 https://doi.org/10.1006/dbio.2000.9912
  21. Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, et al. Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 2005; 23: 19-20 https://doi.org/10.1038/nbt0105-19