Profiles of microRNAs in Mice Follicles According to Gonadotropins during in vitro Culture

생쥐 난포의 체외배양 중 생식샘자극호르몬에 따른 미세리보핵산 발현 양상

  • Kim, Yong-Jin (Department of Obstetrics and Gynecology, College of Medicine) ;
  • Ku, Seung-Yup (Department of Obstetrics and Gynecology, College of Medicine) ;
  • Kim, Yoon-Young (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Oh, Sun-Kyung (Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University) ;
  • Kim, Seok-Hyun (Department of Obstetrics and Gynecology, College of Medicine) ;
  • Choi, Young-Min (Department of Obstetrics and Gynecology, College of Medicine) ;
  • Moon, Shin-Yong (Department of Obstetrics and Gynecology, College of Medicine)
  • 김용진 (서울대학교 의과대학 산부인과학교실) ;
  • 구승엽 (서울대학교 의과대학 산부인과학교실) ;
  • 김윤영 (서울대학교 의학연구원 인구의학연구소) ;
  • 오선경 (서울대학교 의학연구원 인구의학연구소) ;
  • 김석현 (서울대학교 의과대학 산부인과학교실) ;
  • 최영민 (서울대학교 의과대학 산부인과학교실) ;
  • 문신용 (서울대학교 의과대학 산부인과학교실)
  • Published : 2009.12.30

Abstract

Objective: MicroRNAs (miR) are known to repress target genes at post-transcriptional level and play important roles in development and maturation of cell. However, the expression profiles of miR during ovarian follicle maturation have not been fully elucidated. Here, we designed this study to investigate the expression profiles of miR in oocytes and granulose cells (G-cells) after in vitro culture according to gonadotropins and adding hCG. Methods: Ovaries from 12-day-old mice (C57BL6) were removed and preantral follicles were isolated and cultured in $20\;{\mu}L$-drop of culture media with supplementation of either rFSH, rLH, or rFSH+rLH. After their full maturation, follicles were incubated with rhCG and rEGF. RNA was isolated from oocytes and G-cells, and real-time PCR were performed with primers of miR known to be expressed in the mouse ovary (mmu-miR-16, -miR-27a, -miR-126, -miR-721). Results: FSH+LH group showed the highest ovulation and MII rates among gonadotropin groups. The profiles of miRs in oocytes and G-cells differed according to gonadotropin groups and adding hCG. The profiles of miRs showed divergent changes between oocytes and G-cells. Conclusion: miR expression profiles are altered by gonadotropins and supplementation of hCG during in vitro maturation of murine follicles. Target gene study must be necessary to validate these findings.

목 적: 미세리보핵산 (microRNA, miR)은 전사 후 (post-transcriptional) 단계에서 목표 유전자 (target gene)의 발현을 억제하여 세포의 발달과 성장에 중요한 역할을 하는 것으로 알려져 있다. 그러나 난포의 성장과정 중의 miR 발현 양상에 대해서는 잘 알려져 있지 않다. 따라서 존 연구는 생쥐 난포의 체외배양 후 생식샘자극호르몬 (gonadotropin)과 사람융모성생식샘자극호르몬 (hCG) 첨가에 따른 난자와 난구세포에서의 miR 발현 양상을 살펴보고자 수행되었다. 연구방법: 생후 12일된 생쥐 (C57BL6)의 난소 적출 후, 전동 난포 (preantral follicle)를 분리하여 무작위로 $20\;{\mu}L$ 점적의 배양액만 있는 군 (control group), 재조합 난포자극호르몬을 첨가한 군 (FSH group), 재조합 황체형성호르몬을 첨가한 군 (LH group), FSH와 LH를 같이 첨가한 군 (FSH+LH group)으로 나누어 배양하였다. 난포가 충분히 성장하였을 때, 다시 hCG를 첨가한 군 (hCG (+) group)과 첨가하지 않은 군 (hCG (-) group)으로 나누어 hCG (-) group에서 난자와 난구세포를 각각 분리하여 RNA를 추출하였다. 36시간 후, 배란된 난자 난구세포 복합체 (cumulus oocyte complex, COC)에서 난자와 난구세포를 각각 분리하여 RNA를 추출하고, mmu--miR-16, -miR-27a, -miR-126, -miR-721 등의 miR에 대한 primer를 이용하여 실시간 중합연쇄반응을 시행하였다. 결 과: 배란율과 MII 난자 생성율은 다른 군들에 비해 FSH+LH군에서 유의하게 높았다. 각 군내의 난자와 난구세포 사이에서도 miR 발현 양상의 차이가 관찰되었다. 또한, 난자와 난구세포에서의 miR 발현 양상은 각 군간 차이가 있었으며, hCG (+)군과 hCG (-)군간에도 차이를 나타냈다. 결 론: 생쥐 난포의 체외배양 중 난자 및 난구세포에서의 miR 발현 양상은 gonadotropin의 종류 및 난자의 성숙도에 따라 다르다. 이러한 결과는 표적 유전자의 발현에 대한 추후 연구를 통한 확인이 필요할 것으로 사료된다.

Keywords

References

  1. Vegetti W, Alagna F. FSH and folliculogenesis: from physiology to ovarian stimulation. Reprod Biomed Online 2006; 12: 684-94 https://doi.org/10.1016/S1472-6483(10)61080-2
  2. Zhang M, Ouyang H, Xia G. The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol Hum Reprod 2009; 15: 399-409 https://doi.org/10.1093/molehr/gap031
  3. Kawashima I, Okazaki T, Noma N, Nishibori M, Yamashita Y, Shimada M. Sequential exposure of porcine cumulus cells to FSH and/or LH is critical for appropriate expression of steroidogenic and ovulation-related genes that impact oocyte maturation in vivo and in vitro. Reproduction 2008; 136: 9-21 https://doi.org/10.1530/REP-08-0074
  4. Humaidan P, Papanikolaou EG, Tarlatzis BC. GnRHa to trigger final oocyte maturation: a time to reconsider. Hum Reprod 2009; 24: 2389-94 https://doi.org/10.1093/humrep/dep246
  5. Fan L, Ling J, Ma X, Cui YG, Liu JY. Involvement of HSP10 during the ovarian follicular development of polycystic ovary syndrome: Study in both human ovaries and cultured mouse follicles. Gynecol Endocrinol 2009; 25: 392-397 https://doi.org/10.1080/09513590902730796
  6. Hasegawa A, Kumamoto K, Mochida N, Komori S, Koyama K. Gene expression profile during ovarian folliculogenesis. J Reprod Immunol 2009; 83: 40-4 https://doi.org/10.1016/j.jri.2009.09.002
  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-97 https://doi.org/10.1016/S0092-8674(04)00045-5
  8. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-33 https://doi.org/10.1016/j.cell.2009.01.002
  9. Ambros V. The functions of animal microRNAs. Nature 2004; 431: 350-5 https://doi.org/10.1038/nature02871
  10. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development 2005; 132: 4645-52 https://doi.org/10.1242/dev.02070
  11. Heo I, Kim VN. Regulating the regulators: posttranslational modifications of RNA silencing factors. Cell 2009; 139: 28-31 https://doi.org/10.1016/j.cell.2009.09.013
  12. Lai EC, Tam B, Rubin GM. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 2005; 19: 1067-80 https://doi.org/10.1101/gad.1291905
  13. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13: 790-5 https://doi.org/10.1016/S0960-9822(03)00250-1
  14. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432: 226-30 https://doi.org/10.1038/nature03076
  15. Sokol NS, Ambros V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 2005;19:2343-54 https://doi.org/10.1101/gad.1356105
  16. Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009; 76: 665-77 https://doi.org/10.1002/mrd.21005
  17. Liu HC, He Z, Rosenwaks Z. Correlation of somatic cell steroid secretion and quality of generated oocytes after in-vitro stimulation of mouse follicles. J Assist Reprod Genet 2006; 23: 191-8 https://doi.org/10.1007/s10815-006-9041-5
  18. Cortvrindt R, Smitz J, Van Steirteghem AC. Assessment of the need for follicle stimulating hormone in early preantral mouse follicle culture in vitro. Hum Reprod 1997; 12: 759-68 https://doi.org/10.1093/humrep/12.4.759
  19. Cortvrindt R, Hu Y, Smitz J. Recombinant luteinizing hormone as a survival and differentiation factor increases oocyte maturation in recombinant follicle stimulating hormonesupplemented mouse preantral follicle culture. Hum Reprod 1998; 13: 1292-302 https://doi.org/10.1093/humrep/13.5.1292
  20. Eppig JJ. Maintenance of meiotic arrest and the induction of oocyte maturation in mouse oocyte-granulosa cell complexes developed in vitro from preantral follicles. Biol Reprod 1991; 45:824-30 https://doi.org/10.1095/biolreprod45.6.824
  21. Liu HC, He Z, Rosenwaks Z. In vitro culture and in vitro maturation of mouse preantral follicles with recombinant gonadotropins. Fertil Steril 2002; 77: 373-83 https://doi.org/10.1016/S0015-0282(01)02977-6
  22. Patrizio P, Fragouli E, Bianchi V, Borini A, Wells D. Molecular methods for selection of the ideal oocyte. Reprod Biomed Online 2007; 15: 346-53 https://doi.org/10.1016/S1472-6483(10)60349-5
  23. Lynn FC. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 2009; 20: 452-9 https://doi.org/10.1016/j.tem.2009.05.007
  24. Yang Y, Bai W, Zhang L, Yin G, Wang X, Wang J, et al. Determination of microRNAs in mouse preimplantation embryos by microarray. Dev Dyn 2008; 237: 2315-27 https://doi.org/10.1002/dvdy.21666
  25. Lonergan P, Gutierrez-Adan A, Rizos D, Pintado B, de la Fuente J, Boland MP. Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge. Mol Reprod Dev 2003; 66: 297-305 https://doi.org/10.1002/mrd.10357
  26. Wang F, Fu XD, Zhou Y, Zhang Y. Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells. BMB Rep 2009; 42: 725-30
  27. Salerno E, Scaglione BJ, Coffman FD, Brown BD, Baccarini A, Fernandes H, et al. Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol Cancer Ther 2009; 8: 2684-92 https://doi.org/10.1158/1535-7163.MCT-09-0127
  28. Feng J, Iwama A, Satake M, Kohu K. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by posttranscriptionally downregulating Runx1. Br J Haematol 2009; 145: 412-23 https://doi.org/10.1111/j.1365-2141.2009.07632.x
  29. Larsson E, Fredlund Fuchs P, Heldin J, Barkefors I, Bondjers C, Genove G, et al. Discovery of microvascular miRNAs using public gene expression data: miR-145 is expressed in pericytes and is a regulator of Fli1. Genome Med 2009; 1: 108 https://doi.org/10.1186/gm108
  30. Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 2009; 66: 169-75 https://doi.org/10.1016/j.lungcan.2009.01.010
  31. Wheeler G, Ntounia-Fousara S, Granda B, Rathjen T, Dalmay T. Identification of new central nervous system specific mouse microRNAs. FEBS Lett 2006; 580: 2195-200 https://doi.org/10.1016/j.febslet.2006.03.019
  32. Lei L, Jin S, Gonzalez G, Behringer RR, Woodruff TK. The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 2009 https://doi.org/10.1016/j.mce.2009.09.021