DOI QR코드

DOI QR Code

Effects of compressive stress on the expression of M-CSF, IL-$1{\beta}$, RANKL and OPG mRNA in periodontal ligament cells

압박력이 치주인대 세포의 M-CSF, IL-$1{\beta}$, RANKL 및 OPG mRNA 발현에 미치는 영향

  • Kim, Ji-Woong (Department of Orthodontics, Dental Hospital, East-West Neo Medical Center) ;
  • Lee, Ki-Soo (Department of Orthodontics, Dental Hospital, East-West Neo Medical Center) ;
  • Nahm, Jong-Hyun (Department of Orthodontics, Dental Hospital, East-West Neo Medical Center) ;
  • Kang, Yoon-Goo (Department of Orthodontics, Dental Hospital, East-West Neo Medical Center)
  • Received : 2008.01.30
  • Accepted : 2009.06.13
  • Published : 2009.08.30

Abstract

Objective: The aim of this study was to determine if human PDL cells can produce osteoclastogenic mRNA and examine how compressive stress affects the expression of osteoclastogenic mRNA in human PDL cells. Methods: Human PDL cells were obtained from biscupids extracted for orthodontic treatment. The compressive force was adjusted by increasing the number of cover glasses. PDL cells were subjected to a compressive force of 0.5, 1.0, 2.0, 3.0 or $4.0\;g/cm^2$ for 0.5, 1.5, 6, 24 or 48 hours. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to examine levels of M-CSF, IL-$1{\beta}$, RANKL, OPG mRNA expression. Results: Human PDL cells could produce M-CSF mRNA. Human PDL cells under compressive stress showed increased M-CSF, IL-$1{\beta}$ and RANKL mRNAs expression in a force (up to $2\;g/cm^2$) and time-dependent manner. However, OPG mRNA expression was constant regardless of the level and duration of stress. Conclusions: Continuous compressive stress induced the mRNA expression of osteoclastogenic cytokines including M-CSF, RANKL, IL-$1{\beta}$ in PDL cells. Together with an unchanged OPG mRNA level, these results suggest that compressive stress-induced osteoclastogenesis in vivo is partly controlled by M-CSF, RANKL and IL-$1{\beta}$ expression in PDL cells.

이 연구의 목적은 배양된 사람 치주인대 세포에서 파골세포의 형성에 관련된 물질을 합성, 분비할 수 있는지를 알아보고 압박력이 M-CSF, IL-$1{\beta}$, RANKL 및 OPG mRNA의 발현에 미치는 영향을 알아보고자 하였다. 교정치료를 목적으로 발치된 소구치에서 얻은 치주인대세포를 배양한 후 다양한 크기(0.5, 1.0, 2.0, 3.0, $4.0\;g/cm^2$)의 기계적 자극을 다양한 기간(0.5, 1.5, 6, 24, 48 hours) 동안 적용하고, M-CSF, IL-$1{\beta}$, RANKL, OPG mRNA 발현양의 변화를 검사하였다. 각각의 실험군에서 얻어진 mRNA에 대해 역전사 중합효소 연쇄반응검사를 시행하였다. 검사 결과 압박력은 사람 치주인대 세포에서 M-CSF mRNA를 발현시켰으며 M-CSF, IL-$1{\beta}$, RANKL mRNA의 발현양은 자극의 크기와 기간에 따라 증가하였다. 그러나 압박력은 사람 치주인대 세포에서 OPG mRNA의 발현양에 영향을 미치지 않는 것으로 나타났다. 이상의 결과는 기계적 자극이 치주인대 세포에서 M-CSF, IL-$1{\beta}$, RANKL mRNA의 발현양을 조절함으로 파골세포의 분화에 영향을 미칠 수 있음을 시사한다.

Keywords

References

  1. Roberts WE, Goodwin WC, Heiner SR. Cellular response to orthodontic force. Dent Clin North Am 1981;25:3-17
  2. Mitchell DL, West JD. Attempted orthodontic movement in the presence of suspected ankylosis. Am J Orthod 1975;68: 404-11 https://doi.org/10.1016/0002-9416(75)90181-5
  3. Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/ RANKL but not macrophage colony-stimulating factor. Bone 1999;25:517-23 https://doi.org/10.1016/S8756-3282(99)00210-0
  4. Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation. Endocrine Rev 1992;13:66-80 https://doi.org/10.1210/edrv-13-1-66
  5. Matsuzaki K, Udagawa N, Takahashi N, Yamaguchi K, Yasuda H, Shima N, et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun 1998;246:199-204 https://doi.org/10.1006/bbrc.1998.8586
  6. Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, et al. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology 1996;137:2187-90
  7. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309-19 https://doi.org/10.1016/S0092-8674(00)80209-3
  8. Hasegawa T, Kikuiri T, Takeyama S, Yoshimura Y, Mitome M, Oguchi H, et al. Human periodontal ligament cells derived from deciduous teeth induce osteoclastogenesis in vitro. Tissue Cell 2002;34:44-51 https://doi.org/10.1054/tice.2002.0223
  9. Yongchaitrakul T, Lertsirirangson K, Pavasant P. Human periodontal ligament cells secrete macrophage colony-stimulating factor in response to tumor necrosis factor-alpha in vitro. J Periodontol 2006;77:955-62 https://doi.org/10.1902/jop.2006.050338
  10. Wada N, Maeda H, Tanabe K, Tsuda E, Yano K, Nakamuta H, et al. Periodontal ligament cells secrete the factor that inhibits osteoclastic differentiation and function: the factor is osteoprotegerin/ osteoclastogenesis inhibitory factor. J Periodont Res 2001;36:56-63 https://doi.org/10.1034/j.1600-0765.2001.00604.x
  11. Lowney JJ, Norton LA, Shafer DM, Rossomando EF. Orthodontic forces increase tumor necrosis factor alpha in the human gingival sulcus. Am J Orthod Dentofacial Orthop 1995;108:519-24 https://doi.org/10.1016/S0889-5406(95)70052-8
  12. Bumann A, Carvalho RS, Schwarzer CL, Yen EH. Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur J Orthod 1997;19:29-37 https://doi.org/10.1093/ejo/19.1.29
  13. Yamaguchi M, Shimizu N. Identification of factors mediating the decrease of alkaline phosphatase activity caused by tension- force in periodontal ligament cells. Gen Pharmacol 1994; 25:1229-35 https://doi.org/10.1016/0306-3623(94)90142-2
  14. Lekic P, McCulloch CA. Periodontal ligament cell populations: the central role of fibroblasts in creating a unique tissue. Anat Rec 1996;245:327-41 https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<327::AID-AR15>3.0.CO;2-R
  15. McCulloch CA, Melcher AH. Cell density and cell generation in the periodontal ligament of mice. Am J Anat 1983;167:43-58 https://doi.org/10.1002/aja.1001670105
  16. Kawase T, Sato S, Miake K, Saito S. Alkaline phosphatase of human periodontal ligament fibroblastic cells. Adv Dent Res 1988;2:234-9 https://doi.org/10.1177/08959374880020020701
  17. Kanai K, Nohara H, Hanada K. Initial effects of continuously applied compressive stress to human periodontal ligament fibroblasts. J Jpn Orthod Soc 1992;51:153-63
  18. Watanabe K, Saito I, Hanada K. Effects of conditioned medium of continuously compressed human periodontal ligament fibroblasts on MC3T3-E1 cells. J Jpn Orthod Soc 1998;57:173-9
  19. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor $\kappa$B ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 2002;17:210-20 https://doi.org/10.1359/jbmr.2002.17.2.210
  20. Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. J Biochem 2000;33:3-14 https://doi.org/10.1016/S0021-9290(99)00177-3
  21. Basso N, Heersche JNM. Characteristics of in vitro osteoblastic cell loading models. Bone 2002;30:347-51 https://doi.org/10.1016/S8756-3282(01)00678-0
  22. Nakao K, Goto T, Gunjigake KK, Konoo T, Kobayashi S, Yamaguchi K. Intermittent force induces high RANKL expression in human periodontal ligament cells. J Dent Res 2007;86:623-8 https://doi.org/10.1177/154405910708600708
  23. Nakao K, Goto T, Gunjigake K, Konoo T, Kobayashi S, Yamaguchi K. Neuropeptides modulate RANKL and OPG expression in human periodontal ligament cells. Orthodontic Waves 2007;66:33-40 https://doi.org/10.1016/j.odw.2007.03.004
  24. Choi HS. Effects of tension and compression force on PGE2 of human periodontal ligament cells in vitro. [PhD thesis] Seoul; Ewha Womans University: 2000
  25. Yamaguchi M, Ozawa Y, Nogimura A, Aihara N, Kojima T, Hirayama Y, et al. Cathepsins B and L increased during response of periodontal ligament cells mechanical stress in vitro. Connect Tissue Res 2004;45:181-9 https://doi.org/10.1080/03008200490514149
  26. Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res 2006;9:63-70 https://doi.org/10.1111/j.1601-6343.2006.00340.x
  27. Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N. Modulation of osteoclast differentiation by local factors. Bone 1995;17(Suppl):87-91 https://doi.org/10.1016/8756-3282(95)00185-G
  28. Sato K, Fujii Y, Asano S, Ohtsuki T, Kawakami M, Kasono K, et al. Recombinant human interleukin 1 alpha and beta stimulate mouse osteoblast-like cells (MC3T3-E1) to produce macrophage-colony stimulating activity and prostaglandin E2. Biochem Biophys Res Commun 1986;141:285-91 https://doi.org/10.1016/S0006-291X(86)80366-7
  29. Perkins SL, Kling SJ. Local concentrations of macrophage colony- stimulating factor mediate osteoclastic differentiation. Am J Physiol 1995;269:E1024-30
  30. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizukt S, et al. Osteoclast differentiation factor is a ligand for oprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95:3597-602 https://doi.org/10.1073/pnas.95.7.3597
  31. Tsuji K, Uno K, Zhang GX, Tamura M. Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease- 1 and -2. J Bone Miner Metab 2004;22:94-103 https://doi.org/10.1007/s00774-003-0456-0
  32. Lee KJ, Lee SI, Hwang CJ, Ohk SH, Tian YS. The effect of progressive tensional force on mRNA expression of osteoprotegerin and receptor activator of nuclear factor $\kappa$B ligand in the human periodontal ligament cell. Korean J Orthod 2005;35:262-74
  33. Nakajima R, Yamaguchi M, Kojima T, Takano M, Kasai K. Effects of compression force on fibroblast growth factor-2 and receptor activator of nuclear factor kappa B ligand production by periodontal ligament cells in vitro. J Periodontal Res 2008;43:168-73 https://doi.org/10.1111/j.1600-0765.2007.01008.x

Cited by

  1. An integrated instrument for rapidly deforming living cells using rapid pressure pulses and simultaneously monitoring applied strain in near real time vol.81, pp.12, 2009, https://doi.org/10.1063/1.3520135
  2. FAK Pathway Regulates PGE2 Production in Compressed Periodontal Ligament Cells vol.89, pp.12, 2010, https://doi.org/10.1177/0022034510378521
  3. Effect of thermoplastic appliance thickness on initial stress distribution in periodontal ligament vol.7, pp.4, 2009, https://doi.org/10.1177/1687814015578362
  4. Cell survival and gene expression under compressive stress in a three-dimensional in vitro human periodontal ligament-like tissue model vol.68, pp.2, 2009, https://doi.org/10.1007/s10616-014-9775-3
  5. Effects of low magnitude high frequency mechanical vibration combined with compressive force on human periodontal ligament cells in vitro vol.40, pp.4, 2009, https://doi.org/10.1093/ejo/cjx062
  6. Mechanical stress alters protein O‐GlcNAc in human periodontal ligament cells vol.23, pp.9, 2009, https://doi.org/10.1111/jcmm.14509