Adhesion Characteristics and the High Pressure Resistance of Biofilm Bacteria in Seawater Reverse Osmosis Desalination Process

역삼투 해수담수화 공정 내 바이오필름 형성 미생물의 부착 및 고압내성 특성

  • Jung, Ji-Yeon (Department of Environmental Science and Engineering, GIST) ;
  • Lee, Jin-Wook (Department of Environmental Science and Engineering, GIST) ;
  • Kim, Sung-Youn (Department of Environmental Science and Engineering, GIST) ;
  • Kim, In-S. (Center for Seawater Desalination Plant)
  • 정지연 (광주과학기술원 환경공학과) ;
  • 이진욱 (광주과학기술원 환경공학과) ;
  • 김성연 (광주과학기술원 환경공학과) ;
  • 김인수 (해수담수화 플랜트 사업단)
  • Received : 2008.11.20
  • Accepted : 2009.01.30
  • Published : 2009.01.31

Abstract

Biofouling in seawater reverse osmosis (SWRO) desalination process causes many problems such as flux decline, biodegradation of membrane, increased cleaning time, and increased energy consumption and operational cost. Therefore biofouling is considered as the most critical problem in system operation. To control biofouling in early stage, detection of the most problematic bacteria causing biofouling is required. In this study, six model bacteria were chosen; Bacillus sp., Flavobacterium sp., Mycobacterium sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhodobacter sp. based on report in the literature and phylogenetic analysis of seawater intake and fouled RO membrane. The adhesion to RO membrane, the high pressure resistance, and the hydrophobicity of the six model bacteria were examined to find out their fouling potential. Rhodobacter sp. and Mycobacterium sp. were found to attach very well to RO membrane surface compared to others used in this study. The test of hydrophobicity revealed that the bacteria which have high hydrophobicity or similar contact angle with RO membrane ($63^{\circ}$ of contact angle) easily attached to RO membrane surface. P. aeruginosa which is highly hydrophilic ($23.07^{\circ}$ of contact angle) showed the least adhesion characteristic among six model bacteria. After applying a pressure of 800 psi to the sample, Rhodobacter sp. was found to show the highest reduction rate; with 59-73% of the cells removed from the membrane under pressure. P. fluorescens on the other hand analyzed as the most pressure resistant bacteria among six model bacteria. The difference between reduction rates using direct counting and plate counting indicates that the viability of each model bacteria was affected significantly from the high pressure. Most cells subjected to high pressure were unable to form colonies even thought they maintained their structural integrity.

역삼투 해수담수화(SWRO)공정의 큰 문제점 중 하나인 biofouling 현상을 초기에 감지하기 위한 센서 개발의 선행 연구로써, 본 연구는 역삼투막에 바이오필름을 형성하는 문제성 있는 박테리아를 센서의 타겟 박테리아로 제시하는 것에 중점을 두었다. 문헌조사와 실제 해수담수화 공정에서 사용된 해수 원수와 오염된 역삼투막에 존재하는 박테리아를 계통발생학적으로 분석한 결과를 토대로 Bacillus sp., Flavobacterium sp., Mycobacterium sp., P. aeruginosa, P. fluorescens, 그리고 Rhodobacter sp.의 여섯종의 모델 박테리아를 선정하였고, 선정된 모델 박테리아 중, 막 오염 잠재력을 가진 종을 찾아내기 위해 각각 박테리아의 역삼투막 부착 능력, 고압내성, 그리고 소수성을 비교 분석하였다. 그 결과, 역삼투막 부착능력은 Rhodobacter sp.와 Mycobacterium sp.가 뛰어났으며 소수성이거나 역삼투막(접촉각 약 $63^{\circ}$)과 비슷한 접촉각을 가진 박테리아가 역삼투막에 잘 부착하였다. 800 psi의 고압을 적용 한 후, Rhodobacter sp.는 여섯 종류의 모델 박테리아 중 59-73%의 가장 큰 개체수의 감소를 보였고, P. fluorescens는 1-29%로 가장 높은 고압내성을 보였다. 부착, 소수성, 고압내성 특성을 통한 역삼투막에 biofouling을 유발하는 영향력 있는 박테리아 선정 실험 결과, 여섯 종류의 모델 박테리아 중 Mycobacterium sp.가 부착 능력이 뛰어나고 높은 소수성 특성을 가지며, 800 psi의 고압에서도 50% 이상의 cell의 생물학적 활성능력을 가지고 있어, 막 오염을 유발시키는 가장 잠재력 있는 박테리아로 분석되었다.

Keywords

References

  1. Visvanathan, C., Boonthanon, N., Sathasivan, A., and Jegatheesan, V., 'Pretreatment of seawater for biodegradable organic content removal using membrane bioreactor,' Desalination, 153, 133-140(2003) https://doi.org/10.1016/S0011-9164(02)01114-1
  2. Kim, S., Cho, D., Lee, M. S., Oh, B. S., Kim, J. H., and Kim, I. S., 'SEAHERO R&D program and key strategies for the scale-up of seawater reverse osmosis (SWRO) system,' Desalination, in press(2008) https://doi.org/10.1016/j.desal.2008.01.029
  3. 한국수자원공사, http://www.kwater.or.kr, (2008)
  4. Vrouwenvelder, J. S., Kappelhof, J. W. N. M., Heijrnan, S. G. J., Schippers, J. C., and van der Kooij, D., 'Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water,' Desalination, 157, 361-365(2003) https://doi.org/10.1016/S0011-9164(03)00417-X
  5. Flemming, H.-C., 'Reverse osmosis membrane biofouling,' Experimental Thermal and Fluid Science, 14, 382-391 (1997) https://doi.org/10.1016/S0894-1777(96)00140-9
  6. Herzberg, M. and Elimelech, M., 'Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure,' J. Memb. Sci., 295, 11-20(2007) https://doi.org/10.1016/j.memsci.2007.02.024
  7. Yeo, Y. H., Jang, N., Cho, J., Kim, K. S., Kim, I. S., 'Identification of the effect of extracellular polymeric substances on bacterial adhesion to the membrane surface in a membrane bioreactor using Pseudomonas fluorescens,' Water Sci. Technol., 55, 35-42(2007) https://doi.org/10.2166/wst.2007.026
  8. Al-Ahmad, M., Abdul Aleem, F. A., Mutiri, A., and Ubaisy, A., 'Biofuoling in RO membrane systems Part 1: Fundamentals and control,' Desalination, 132, 173-179(2000) https://doi.org/10.1016/S0011-9164(00)00146-6
  9. Abd El Aleem, F. A., Al-Sugair, K. A., and Alahmad, M. I., 'Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia,' International Biodeterioration & Biodegradation, 41, 19-23(1998) https://doi.org/10.1016/S0964-8305(98)80004-8
  10. Jang, N., Shon, H., Ren, X., Vigneswaran, S., and Kim, I. S., 'Characteristics of bio-foulants in the membrane bioreactor,' Desalination, 200, 201-202(2006) https://doi.org/10.1016/j.desal.2006.03.295
  11. Herzberg, M. and Elimelech, M., 'Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa,' International Society for Microbial Ecology, 2, 180-194(2007) https://doi.org/10.1038/ismej.2007.108
  12. Abdul Azis, P. K., Al-Tisan, I., and Sasikumar, N., 'Biofouling potential and environmental factors of seawater at a desalination plant intake,' Desalination, 135, 69-82(2001) https://doi.org/10.1016/S0011-9164(01)00140-0
  13. Spettmann, D., Eppmann, S., Flemming, H.-C., and Wingender, J., 'Visualization of membrane cleaning using confocal laser scanning microscopy,' Desalination, 224, 195-200(2008) https://doi.org/10.1016/j.desal.2007.04.087
  14. Haunshi, S., Pattanayak, A., Bandyopadhaya, S., Saxena, S. C., and Bujarbaruah, K. M., 'A Simple and Quick DNA Extraction Procedure for Rapid Diagnosis of Sex of Chicken and Chicken Embryos,' Poult. Sci., 45, 75-81(2008) https://doi.org/10.2141/jpsa.45.75
  15. Ten, L. N., Im, W. T., Kim, M. K., and Lee, S. T., 'A plate assay for simultaneous screening of polysaccharideand protein-degrading micro organisms,' Lett. Appl. Microbiol., 40, 92-98(2005) https://doi.org/10.1111/j.1472-765X.2004.01637.x
  16. Kim, K. K., Park, H. Y., Park, W., Kim, I. S., and Lee, S.-T., 'Microbacterium xylanilyticum sp. nov., a xylandegrading bacterium isolated from a biofilm,' International Journal of Systematic and Evolutionary Microbiology, 55, 2075-2079(2005) https://doi.org/10.1099/ijs.0.63706-0
  17. Baker, J.S., Dudley, L.Y., 'Biofouling in membrane systems- A review,' Desalination, 118, 81-89(1998) https://doi.org/10.1016/S0011-9164(98)00091-5
  18. Ivnitsky, H., Katz, I., Minz, D., Shimoni, E., Chen, Y., Tarchitzky, J., Semiat, R., Dosoretz, C.G., 'Characterization of membrane biofouling in nanofiltration processes of wastewater treatment,' Desalination, 185, 255-268 (2005) https://doi.org/10.1016/j.desal.2005.03.081
  19. Schneider, R.P., Ferreira, L.M., Binder, P., Ramos, J.R., 'Analysis of foulant layer in all elements of an RO train,' J. Membr. Sci., 261, 152-162(2005) https://doi.org/10.1016/j.memsci.2005.03.044
  20. Brehant, A., Bonnelye, V., and Perez, M., 'Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination,' Desalination, 144, 353-360(2002) https://doi.org/10.1016/S0011-9164(02)00343-0
  21. Ridgway, H. F., Rigby, M. G., and Argo, D. G., 'Adhesion of a Mycobacterium sp. to cellulose diacetate membranes used in reverse osmosis,' Appl. Environ. Microbiol., 47, 61-67(1984)
  22. Delille, A., Quilès, F., and Humbert, F., 'In Situ Monitoring of the Nascent Pseudomonas fluorescens Biofilm Response to Variations in the Dissolved Organic Carbon Level in Low-Nutrient Water by Attenuated Total Reflectance- Fourier Transform Infrared Spectroscopy,' Appl. Environ. Microbiol., 73, 5782-5788(2007) https://doi.org/10.1128/AEM.00838-07
  23. Blenkinsopp, S. A., Khoury, A. E., and Costerton, J. W., 'Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms,' Appl. Environ. Microbiol., 58, 3770-3773(1992)
  24. Harkes, G., Feijen, J., and Dankert, J., 'Adhesion of Escherichia coli on to a series of poly (methacrylates) differing in charge and hydrophobicity,' Biomaterials, 12, 853-860(1991) https://doi.org/10.1016/0142-9612(91)90074-K
  25. Shi, L., Ardehali, R., Caldwell, K. D., and Valint, P., 'Mucin coating on polymeric material surfaces to suppress bacterial adhesion,' Colloids Surf., B, 17, 229-239(2000) https://doi.org/10.1016/S0927-7765(99)00121-6