Analysis of Enterococcus faecalis Attachment to Granular Activated Carbon with a Column Experiment

칼럼실험에 의한 입상활성탄에서 Enterococcus faecalis의 부착 연구

  • Kim, Hyon-Chong (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Park, Seong-Jik (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Lee, Chang-Gu (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Han, Yong-Un (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Song-Bae (Department of Rural Systems Engineering · Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 김현정 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 박성직 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 이창구 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 한용운 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김성배 (서울대학교 지역시스템공학과.농업생명과학연구원)
  • Received : 2008.10.13
  • Accepted : 2009.02.27
  • Published : 2009.02.28

Abstract

The aim of this study was to investigate the influence of ionic strength and iron impregnation on the attachment of Enterococcus faecalis to granular activated carbon (GAC). Column experiments were performed to examine bacterial adhesion to coconutbased GAC (c-GAC), iron-impregnated c-GAC (fc-GAC), acid-washed c-GAC (a-GAC) and iron-impregnated a-GAC (fa-GAC) under two different solution (NaCl 1, 10 mM) conditions. Results showed that bacterial mass recovery in c-GAC decreased from 77.3 to 61.6% while in a-GAC it decreased from 71.6 to 32.3% with increasing ionic strength from 1 to 10 mM. This indicates that bacterial attachment to GAC can be enhanced with increasing ionic strength. Results also showed that the mass recoveries in fc-GAC were 62.6% (1 mM) and 53.3% (10 mM) while they were 50.8% (1 mM) and 16.9%(10 mM) in fa-GAC, which were lower than those in c-GAC and a-GAC. This demonstrates that bacterial adhesion to GAC can be enhanced through iron impregnation. This study provides information regarding the effects of ionic strength and iron impregnation on bacterial attachment to GAC. Furthermore, this study will advance our knowledge of bacterial removal in surface-modified granular media.

본 연구의 목적은 입상활성탄에서 이온강도와 철첨착이 Enterococcus faecalis의 부착에 미치는 영향을 분석하는 것이다. 야자계 입상활성탄(c-GAC), 철첨착된 야자계 입상활성탄(fc-GAC), 산세척된 야자계 입상활성탄(a-GAC), 그리고 철첨착된 산세척 야자계 입상활성탄(fa-GAC)에서 박테리아 부착을 관찰하기 위하여 두 가지 용액조건(NaCl 1, 10 mM)에서 칼럼실험을 수행하였다. 실험결과, c-GAC에서 이온강도가 1에서 10 mM로 증가함에 따라 박테리아의 질량회수율은 77.3에서 61.6%로 감소하였고, a-GAC에서는 질량회수율이 71.6에서 32.3%로 감소하였다. 이는 이온강도가 증가함에 따라 입상활성탄에서 박테리아의 부착이 증진될 수 있음을 나타낸다. 한편, fc-GAC에서 질량회수율은 62.6% (1 mM)과 53.3% (10 mM)이었고, fa-GAC에서는 50.8% (1 mM)과 16.9% (10 mM)이었는데, 이들 질량회수율이 c-GAC와 a-GAC에서의 질량회수율보다 낮았다. 이는 철첨착에 의하여 입상활성탄에서 박테리아의 부착이 증진될 수 있음을 나타낸다. 본 연구는 입상활성탄에서 박테리아의 부착과 관련하여 이온강도와 철수산화물 첨착의 영향에 대한 정보를 제공하고, 나아가 표면이 변형된 입상여재를 이용한 미생물의 제거에 관한 지식을 증진시킬 것이다.

Keywords

References

  1. Souter, P. F., Cruickshank, G. D., Tankerville, M. Z., Keswick, B. H., Ellis, B. D., Langworthy, D. E., Metz, K. A., Appleby M. R., Hamilton, N., Jones, A. L., and Perry, J. D., "Evaluation of a new water treatment for point-of-use household applications to remove microorganisms and arsenic from drinking water," J. Water Health, 1, 73-84(2003)
  2. Lantagne, D. S., Blount, B. C., Cardinali, F., and Quick, R., "Disinfection by-product formation and mitigation strategies in point-of-use chlorination of turbid and non-turbid waters in western Kenya," J. Water Health, 6, 67-82(2008) https://doi.org/10.2166/wh.2007.013
  3. Brownell, S. A., Chakrabarti, A. R., Kaser, F. M., Connelly, L. G., Peletz, R. L., Reygadas, F., Lang, M. J., Kammen, D. M., and Nelson, K. L., "Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology," J. Water Health, 6, 53-65(2008) https://doi.org/10.2166/wh.2007.015
  4. Doocy, S. and Burnham, G., "Point-of-use water treatment and diarrhoea reduction in the emergency context: an effectiveness trial in Liberia," Trop. Med. Int. Health, 11, 1542-1552(2006) https://doi.org/10.1111/j.1365-3156.2006.01704.x
  5. Reasoner, D., Blannon J., and Geldreich, E., "Microbiological characteristics of third-faucet point-of-use devices," J. Am. Water Works Ass., 79(10), 60-66(1987)
  6. Malley, J. P., Eliason, P. A., and Wagler, J. L., "Pointof- entry treatment of petroleum contaminated water supplies," Water Environ. Res., 65, 119-128(1993) https://doi.org/10.2175/WER.65.2.4
  7. Snyder, J. W., Mains, C. N., Anderson, R. E., and Bissonnette, G. K., "Effect of point-of-use, activated carbon filters on the bacteriological quality of rural ground water supplies," Appl. Environ. Microbiol., 61, 4291-4295(1995)
  8. Stewart, M. H., Wolfe, R. L., and Means, E. G., "Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water," Appl. Environ. Microbiol., 56, 3822-3829(1990)
  9. Tobin, R. S., Smith, D. K., and Lindsay, J. A., "Effects of activated carbon and bacteriostatic filters on microbiological quality of drinking water," Appl. Environ. Microbiol., 41, 646-651(1981)
  10. Chaidez, C. and Gerba, C., "Comparison of the microbiologic quality of point-of-use (POU)-treated water and tap water," Int. J. Environ. Health Res., 14, 253-260 (2004) https://doi.org/10.1080/09603120410001725595
  11. Foppen, J. W. and Schijven, J., 'Transport of E. coli in columns of geochemically heterogeneous sediment,' Water Res., 39, 3082-3088(2005) https://doi.org/10.1016/j.watres.2005.05.023
  12. Paramonova, E., Zerfoss, E. L., and Logan, B. E., "Measurement of biocolloid collision efficiencies for granular activated carbon by use of a two-layer filtration model," Appl. Environ. Microbiol., 72, 5190-5196(2006) https://doi.org/10.1128/AEM.02988-05
  13. Toride, N., Leij, F. J., and van Genuchten, M. Th., "The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments," Research Report No. 137, US Salinity Laboratory
  14. Gaboriaud, F. and Ehrhardt, J. J., "Effects of different crystal faces on the surface charge of colloidal goethite ($\alpha$-FeOOH) particles: an experimental and modeling study," Geochim. Cosmochim. Acta, 67, 967-983(2003) https://doi.org/10.1016/S0016-7037(02)00988-2
  15. Jiang, D., Huang, Q., Cai, P., Rong, X., and Chen, W., "Adsorption of Pseudomonas putida on clay minerals and iron oxide," Colloids Surf. B, 54, 217-221(2007) https://doi.org/10.1016/j.colsurfb.2006.10.030
  16. Kim, S. -B., Park, S. -J., Lee, C. -G., Choi, N. -C., Kim, D. -J., “Bacteria transport through goethite-coated sand: effects of solution pH and coated sand content,” Colloids Surf. B, 63, 236-242(2008) https://doi.org/10.1016/j.colsurfb.2007.12.003