과황산(persulfate) 산화반응을 이용한 염소계 화합물(TCE, PCE) 분해에 관한 연구

A Study on Persulfate Oxidation to Remove Chlorinated Solvents (TCE/PCE)

  • Song, Kyoung-Ho (Department of Cchemical Engineering, Hanyang University) ;
  • Do, Si-Hyun (Department of Cchemical Engineering, Hanyang University) ;
  • Lee, Hong-Kyun (Department of Cchemical Engineering, Hanyang University) ;
  • Jo, Young-Hoon (Department of Cchemical Engineering, Hanyang University) ;
  • Kong, Sung-Ho (Department of Cchemical Engineering, Hanyang University)
  • 투고 : 2009.04.17
  • 심사 : 2009.07.13
  • 발행 : 2009.07.31

초록

Trichloroethylene (TCE)와 tetrachloroethylene (PCE)은 주로 드라이클리닝 및 산업 세척액으로 쓰이는 염소계 화합물이며, 발암성 물질로 알려져 있다. In situ chemical oxidation (ISCO)는 토양 및 지하수를 처리하는 기술로, 지표 아래에 존재하는 오염된 지역까지 산화제를 전달하여 오염물질을 처리하는 기술이다. ISCO에 사용되는 산화제 중 persulfate는 강력한 산화제인 sulfate 라디칼 (${SO_4}^{-{\cdot}}$)을 발생시켜 처리하는 기법으로, 본 연구에서는 TCE와 PCE의 분해에 persulfate 산화공정을 적용하여 초기 pH (3, 6, 9, 12), persulfate의 농도 (0.01, 0.05, 0.1, 0.3, 0.5 M), 초기오염물질농도 (10, 30, 50, 70, 100 mg/L)에 대한 영향을 알아보았다. 초기 pH가 3 일 때, TCE와 PCE는 각각 93.2%와 89.3%로 가장 높은 처리효율을 나타낸 반면, 초기 pH가 12 일 때, TCE 55.0%와 PCE 31.2%로 가장 낮은 효율을 보여 pH가 높아질수록 처리효율이 감소하는 것을 확인할 수 있었다. 또한 persulfate의 농도가 증가할수록 TCE/PCE의 처리효율이 증가하였으며, 가장 높은 persulfate의 농도 (0.5 M)에서의 처리효율은 96.5% (TCE), 95.7% (PCE) 였다. 반면 초기오염농도가 높아질수록 처리효율은 낮아지는 경향이 나타났다. 본 연구에서 얻어진 가장 빠른 분해속도를 나타내는 조건은 pH 3, persulfate 농도 0.5 M, 그리고 오염물질 (TCE/PCE) 농도 10 mg/L이었고, 이때 구해진 1차 분해속도 상수 ($k_{obs}$)는 1.04 (TCE)와 1.31 (PCE) $h^{-1}$ 였다.

In situ chemical oxidations (ISCO) are technologies for destruction of many contaminants in soil and groundwater, and persulfate has been recently studied as an alternative ISCO oxidant. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were chosen for target organic compounds. The objective of this study is to demonstrate the influence of initial pH (3, 6, 9, 12), oxidant concentrations (0.01, 0.05, 0.1, 0.3, 0.5 M), and contaminants concentrations (10, 30, 50, 70, 100 mg/L) on TCE/PCE degradation by persulfate oxidation. The maximum TCE/PCE degradation occurred at pH 3, and the removal efficiencies with this pH condition were 93.2 and 89.3%, respectively. The minimum TCE/PCE degradation occurred at pH 12, and the removal efficiencies were 55.0 and 31.2%, respectively. This indicated that degradation of TCE/PCE decreased with increasing the initial pH of solution. Degradation of TCE/PCE increased with increasing the concentration of persulfate and with decreasing the concentration of contaminants (TCE/PCE). The optimum conditions for TCE/PCE degradation were pH 3, 0.5 M of persulfate solution, and 10 mg/L of contaminant concentration. At these conditions, the first-order rate constants ($k_{obs}$) for TCE and PCE were 1.04 and 1.31 $h^{-1}$, respectively.

키워드

참고문헌

  1. Yeh, C. K., Wu, H. M., and Chen, T. C.,“ Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems,” J. of Hazard. Mater., B96, 29-51(2003)
  2. Interstate Technology Regulation Cooperation (ITRC), “Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, second ed.,” Washington, D. C., (2005)
  3. Huang, K. C., Zhao, Z., Hoag, Dahmani, G. FE., A., and Block, P. A., “Degradation of volatile organic compounds with thermally activated persulfate oxidation,”Chemosphere, 61, 551-560(2005) https://doi.org/10.1016/j.chemosphere.2005.02.032
  4. Liang, C., Wang, Z. S., and Mohanty, N., “Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20${^{\circ}C}$,” Sci. Total Environ., 370, 271-277 (2006) https://doi.org/10.1016/j.scitotenv.2006.08.028
  5. House, D. A., “Kinetics and mechanism of oxidations by peroxydisulfate,”Chem. Rev., 62, 185-203(1962) https://doi.org/10.1021/cr60217a001
  6. Kolthoff, I. M., and Miller, I. K.,“ The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of persulfate ion in aqueous medium,”J. Am. Chem. Soc., 73, 3055-3059 (1977)
  7. Neta, P., Madhavan, V., Zemel, H., and Fessenden, R. W.,“ Rate constants and mechanism of reaction of SO4-∙ with aromatic compounds,”J. Am. Chem. Soc., 99, 163-164(1977) https://doi.org/10.1021/ja00443a030
  8. Liang, C., Wang, Z. S., and Bruell, C. J., “Influence of pH on persulfate oxidation of TCE at ambient temperatures,” Chemosphere, 66, 106-113(2007) https://doi.org/10.1016/j.chemosphere.2006.05.026
  9. Huang, K. C., Couttenye, R. A., and Hoag, G. E., “Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether(MTBE),” Chemosphere, 49, 413-420(2002) https://doi.org/10.1016/S0045-6535(02)00330-2
  10. Li, K., Stefan, M. I., and Crittenden, J. C., “UV Photolysis of Trichloroethylene: Product Study and Kinetic Modeling,” Environ. Sci. Technol., 38, 6685-6693(2004) https://doi.org/10.1021/es040304b
  11. Tsitonaki, A., Smets, B. F., and Bjerg, P. L., “Effects of heatactivated persulfate oxidation on soil microorganisms,”Water res., 42, 1013-1022(2008) https://doi.org/10.1016/j.watres.2007.09.018
  12. Liang, C., Bruell, C. J., Marley, M. C., and Sperry, K. L., “Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfatethiosulfate redox couple,” Chemosphere, 55, 1213-1223(2004) https://doi.org/10.1016/j.chemosphere.2004.01.029
  13. Pennington, D. E., and Haim, A., “ Stoichiometry and mechanism of the chromium (II) peroxydisulfate reaction,” J. Am. Chem. Soc., 90, 3700-3704(1968) https://doi.org/10.1021/ja01016a017
  14. Dogliotti, L., and Hayon, E.,“ Flash Photolysis of Persulfate Ions in Aqueous Solutions. Study of the Sulfate and Ozonide radical Anions,”J. Phys. Chem., 71, 2511-2516(1967) https://doi.org/10.1021/j100867a019
  15. Xu, X. R., Li, H. B., Wang, W. H., and Gu, J. D.,“ Degradation of dyes in aqueous solutions by the Fenton process,” Chemosphere, 57, 595-600(2004) https://doi.org/10.1016/j.chemosphere.2004.07.030
  16. Xu, X. R., Li, H. B., Wang, W. H., and Gu, J. D.“, Decolorization of dyes and textile wastewater by potassium permanganate,” Chemosphere, 59, 893-898 (2005) https://doi.org/10.1016/j.chemosphere.2004.11.013
  17. Liang, C., Huang, C. F., and Chen, Y. J.,“ Potential for activated persulfate degradation of BTEX,” Water res., 42, 4091-4100 (2008) https://doi.org/10.1016/j.watres.2008.06.022
  18. Huang, K. C., Hoag, G. E., Chheda, P., Woody, B. A. and Dobbs, G. M.,“ Kinetics study of oxidation of chlorinated ethenes with permanganate,”J. Hazard. Mater., 87, 155-169(2001) https://doi.org/10.1016/S0304-3894(01)00241-2