Adsorption of VOCs from Dry Cleaning

세탁소 배출 휘발성유기화합물의 흡착 제거 기술

  • Lee, Seung-Jae (Waste Energy Research Center, Korea Institute of Energy Research) ;
  • Moon, Seung-Hyun (Waste Energy Research Center, Korea Institute of Energy Research)
  • 이승재 (한국에너지기술연구원 폐기물에너지연구센타) ;
  • 문승현 (한국에너지기술연구원 폐기물에너지연구센타)
  • Received : 2009.07.02
  • Accepted : 2009.10.24
  • Published : 2009.11.30

Abstract

This study investigated a possibility to develop an adsorption process for volatile organic compounds (VOCs) of the solvent emitted during dry cleaning. Pitch activated carbon fiber (ACF) was chosen as an adsorbent of VOCs, and an electric swing adsorption process was utilized for the reproduction of the adsorbent after the completion of VOCs adsorption. Effects of ACF types and several solvents such as trichloroethylene (TCE) and toluene were examined on breakthrough curves and amounts of adsorbed VOCs. ACF was pretreated under various conditions in order to enhance the amounts of the adsorbed VOCs. Temperatures and voltages were measured for the reproduction of the ACF after full adsorption. ACF having micropores exhibited high adsorption of TCE, and high surface area of ACF could increase the adsorption property of toluene. In general, ACF could adsorb 41~54% TCE of the adsorbent weight. The increase of inlet VOCs concentration significantly decreased the breakthrough time and slightly lowered the amounts of adsorbed VOCs. Thus, ACF could effectively adsorb VOCs in low concentration in the feed stream. ACF pretreated by heat under vacuum showed excellent toluene adsorption with controlling oxygen functional groups on the ACF surface, which revealed that vacant carbon site could be the adsorption point of toluene. Most adsorbed toluene was desorbed at $150^{\circ}C$.

본 연구에서는 세탁소에서 배출되는 휘발성유기화합물을 흡착처리하는 공정의 개발 가능성을 검토하였다. 휘발성 유기화합물을 흡착하는 재료로는 핏치계 활성탄소섬유를 선택하였고, 흡착제의 재생방법으로는 전기변동법을 사용하였다. 용제는 트리클로로에틸렌과 톨루엔을 대상으로 하였으며 활성탄소섬유와 용제의 종류에 따른 파과곡선과 흡착량을 비교 검토하였다. 흡착량을 증대시키기 위하여 다양한 방법으로 활성탄소섬유를 전처리하였다. 또한 흡착이 완료된 활성탄소섬유의 재생에 필요한 온도와 허용전압을 측정하였다. 그 결과 트리클로로에틸렌의 흡착에는 미세 기공이 잘 발달된 활성탄소섬유가 우수한 성능을 나타낸 반면 톨루엔의 경우에는 비표면적이 큰 흡착제가 우수한 성능을 보였다. 활성탄소섬유는 흡착제 무게의 41~54%에 해당하는 트리클로로에틸렌을 흡착하였으며 유입되는 휘발성유기화합물의 농도가 높아지면 완전흡착시간은 급격히 짧아지고 흡착량은 서서히 감소하여 낮은 농도의 휘발성유기화합물을 처리하는 것이 보다 유리한 것으로 나타났다. 활성탄소섬유 표면의 산소작용기를 조절한 결과, 진공열처리를 한 활성탄소섬유의 톨루엔 흡착성능이 가장 우수한 것으로 나타나, 톨루엔의 흡착은 빈자리 탄소(vacant carbon site)가 흡착점이라고 판단된다. 흡착된 용제는 $150^{\circ}C$에서 대부분 탈착되었다.

Keywords

References

  1. 환경부,“ 환경통계연감,”제21호, 123-124(2008)
  2. Yoshikawa, M., Yasutake, A., and Mochida, I., “Lowtemperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers,”Appl. Catal., A: General, 173, 239-245(1998) https://doi.org/10.1016/S0926-860X(98)00182-3
  3. Kisamori, S., Kuroda, K., Kawano, S., Mochida, I., Matsumura, Y., and Yoshikawa, M., “Oxidative removal of $SO_{2}$ and recovery of $H_{2}SO_{4}$ over poly(acrylonitrile)-based active carbon fiber,”Energy Fuels, 8(6), 1337-1340(1994) https://doi.org/10.1021/ef00048a023
  4. Jing, L. I., Zhong, L. I., Bing, L. I. U., Qibin, XIA, and Hongxia, XI, “Effect of relative humidity on adsorption of formaldehyde on modified activated carbons,”Chin. J. Chem. Eng., 16(6), 871-875(2008) https://doi.org/10.1016/S1004-9541(09)60008-2
  5. Cheng, T., Jiang, Y., Zhang, Y., and Liu, S., “Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed,”Carbon, 42, 3081-3085(2004) https://doi.org/10.1016/j.carbon.2004.07.021
  6. Luo, L., Ramirez, D., Rood, M. J., Grevillot, G., Hay, K. J., and Thurston, D. L., “Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies,”Carbon, 44, 2715-2723(2006) https://doi.org/10.1016/j.carbon.2006.04.007
  7. Benson, R. E.,and Courouleau, P. H., “European practice for solvent recovery in printing industry,”Chem. Eng. Prog., 44(6), 459-468(1948)
  8. Rafson, H. J.,“ Odor and VOC control handbook,”Mc-Graw-Hill, New York (1998)
  9. Qiao, H., “Research Institute of Chemical Defense technical report,”Beijing,China,7 (1989)
  10. Ruthven, D. M., “Principles of adsorption and adsorption processes,”Wiley, New York (1984)
  11. Guerin, P., and Domine, D., “Process for separating a binary gas mixture by contact with an adsorbent,”French patent 1233261 (1957)
  12. Hauck, W., Grevillot, G., and Lamine, A. S.“, Induktionsheizung : Anwendung auf die Regenerierung von beladenen Aktivkohle Festbetten,”Chemie lng Techn, 69(8), 1138-1142(1997) https://doi.org/10.1002/cite.330690817
  13. Mocho, P., Bourhis, J. C., and Le Cloirec, P., “Heating activated carbon by electromagnetic induction,”Carbon, 34(7), 851-856(1996) https://doi.org/10.1016/0008-6223(96)00053-X
  14. Petkovska, M., Tondeur, D., Grevillot, G., Granger, J., and Mitrovic, M., “Temperature swing gas separation with electrothermal desorption step,”Sep. Sci. Technol, 26(3), 425-444(1991) https://doi.org/10.1080/01496399108050482
  15. 한양대학교 환경 및 산업의학연구소“, VOC 배출 억제, 방지시설의저감효과및농도기준설정등에관한연구”, 환경부 (2001)
  16. Fujie, K., Minagawa, S., Suzuki, T., and Kaneko, K., Chemical Physics, 236, 427(1995)
  17. Rong, H., Ryu, Z., Zheng, J., and Zhang, Y., “Effect of air oxidation of rayon-based activated fibers on the adsorption behavior for formaldehyde,”Carbon, 40, 2291-2300(2002) https://doi.org/10.1016/S0008-6223(02)00109-4
  18. Laine, N. R., Vastola, F. J. and Walker Jr., P. L., J. Phys. Chem., 67, 2030(1963) https://doi.org/10.1021/j100804a016
  19. 성훈제, 문승현, 엄태인, 채종성, 전영남“, 전처리ACF의표면특성이 NO산화에 미치는 영향,”대한환경공학회지, 26(6), 670-674(2004)