DOI QR코드

DOI QR Code

Energy Generation Coupled to Azoreduction by Membranous Vesicles from Shewanella decolorationis S12

  • Hong, Yi-Guo (Key Laboratory of Tropical Marine Environment Dynamics (LED), South China Sea Institute of Oceanology, Chinese Academy of Science) ;
  • Guo, Jun (Guangdong Institute of Microbiology) ;
  • Sun, Guo-Ping (Guangdong Institute of Microbiology)
  • 투고 : 2008.05.14
  • 심사 : 2008.06.18
  • 발행 : 2009.01.31

초록

Previous studies have demonstrated that Shewanella decolorationis S12 can grow on the azo compound amaranth as the sole electron acceptor. Thus, to explore the mechanism of energy generation in this metabolism, membranous vesicles (MVs) were prepared and the mechanism of energy generation was investigated. The membrane, which was fragmentized during preparation, automatically formed vesicles ranging from 37.5-112.5 nm in diameter under electron micrograph observation. Energy was conserved when coupling the azoreduction by the MVs of an azo compound or Fe(III) as the sole electron acceptor with $H_2$, formate, or lactate as the electron donor. The amaranth reduction by the vesicles was found to be inhibited by specific respiratory inhibitors, including $Cu^{2+}$ ions, dicumarol, stigmatellin, and metyrapone, indicating that the azoreduction was indeed a respiration reaction. This finding was further confirmed by the fact that the ATP synthesis was repressed by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). Therefore, this study offers solid evidence of a mechanism of microbial dissimilatory azoreduction on a subcell level.

키워드

참고문헌

  1. Altendorf, K. H. and L. A. Staehelin. 1974. Orientation of membrane vesicles from Escherichia coli as detected by freezecleave electron microscopy. J. Bacteriol. 117: 888-899
  2. Arnold, R. G., T. J. DiChristina, and M. R. Hoffmann. 1986. Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 ('Pseudomonas ferrireductans'). Appl. Environ. Microbiol. 52: 281-289
  3. Banat, I. M., P. Nigam, D. Singh, and R. Marchant. 1996. Microbial decolorization of textile-dye-containing effluents: A review. Biores. Technol. 58: 217-227 https://doi.org/10.1016/S0960-8524(96)00113-7
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Brown, M. A. and S. C. DeVito. 1993. Predicting azo dye toxicity. Crit. Rev. Environ. Sci. Technol. 23: 249-324 https://doi.org/10.1080/10643389309388453
  6. Bumpus, J. A. 1995. Microbial degradation of azo dyes. Prog. Ind. Microbiol. 32: 157-176 https://doi.org/10.1016/S0079-6352(06)80031-7
  7. Chung, K. T., G. E. Fulk, and M. Egan. 1978. Reduction of azo dyes by intestinal anaerobes. Appl. Environ. Microbiol. 35: 558-562
  8. Chung, K. T. and C. E. Cerniglia. 1992. Mutagenicity of azo dyes: Structure-activity relationships. Mutat. Res. 77: 201-220 https://doi.org/10.1016/0165-1110(92)90044-A
  9. Esteve-Nunez, A., G. Lucchesi, B. Philipp, B. Schink, and J. L. Ramos. 2000. Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11. J. Bacteriol. 182: 1352-1355 https://doi.org/10.1128/JB.182.5.1352-1355.2000
  10. Fernandez, V. M., M. L. Rua, P. Reyes, R. Cammack, and E. C. Hatchikian. 1989. Inhibition of Desulfovibrio gigas hydrogenase with copper salts and other metal ions. Eur. J. Biochem. 185:449-454 https://doi.org/10.1111/j.1432-1033.1989.tb15135.x
  11. Gerencs$\acute{e}$r, L., L. Rinyu, L. K$\acute{a}$lm$\acute{a}$n, E. Takahashi, C. A. Wraight, and P. Mar$\acute{o}$ti. 2004. Competitive binding of quinone and antibiotic stigmatellin to reaction centers of photosynthetic bacteria. Acta Biol. Szegediensis 48: 25-33
  12. Ghiorse, W. C. and H. L. Ehrlich. 1976. Electron transport components of the $MnO_2$ reductase system and the location of the terminal reductase in a marine Bacillus. Appl. Environ. Microbiol. 31: 977-985
  13. Hirata, H., K. Altendorf, and F. M. Harold. 1974. Energy coupling in membrane vesicles of Escherichia coli. J. Biol. Chem. 249: 2939-2945
  14. Hong, Y., J. Guo, Z. Xu, X. Chen, M. Xu, and G. Sun. 2007 Respiration and growth of Shewanella decolorationis S12 with azo compound as sole electron acceptor. Appl. Environ. Microbiol. 73: 64-72 https://doi.org/10.1128/AEM.01415-06
  15. Hong, Y., J. Guo, Z. Xu, M. Xu, and G. Sun. 2007. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. J. Microbiol. Biotechnol. 17: 428-437
  16. Kaback, H. R. 1974. Transport studies in bacterial membrane vesicles. Science 186: 882-892 https://doi.org/10.1126/science.186.4167.882
  17. Louie, T. M. and W. W. Mohn. 1999. Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J. Bacteriol. 181: 41-46
  18. Maguire, R. J. 1992. Occurrence and persistence of dyes in a Canadian river. Water Sci. Technol. 25: 265-270
  19. Miller, T. L. and M. L. Wolin. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985-987
  20. Mitchell, P. 1979. Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206: 1148-1159 https://doi.org/10.1126/science.388618
  21. Mitchell, P. 1979. Compartmentation and communication in living systems. Ligand conduction: A general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur. J. Biochem. 95: 1-20 https://doi.org/10.1111/j.1432-1033.1979.tb12934.x
  22. Ouchane, S., I. Agalidis, and C. Astier. 2002. Natural resistance to inhibitors of the ubiquinol cytochrome c oxidoreductase of Rubrivivax gelatinosus: Sequence and functional analysis of the cytochrome bc1 complex. J. Bacteriol. 184: 3815-3822 https://doi.org/10.1128/JB.184.14.3815-3822.2002
  23. Pearcea, C. I., J. R. Lloydb, and J. T. Guthriea. 2003. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigments 58: 179-196 https://doi.org/10.1016/S0143-7208(03)00064-0
  24. Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56: 69-80 https://doi.org/10.1007/s002530100686
  25. Sapra, R., K. Bagramyan, and M. W. W. Adams. 2003. A simple energy-conserving system: Proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA 100: 7545-7550 https://doi.org/10.1073/pnas.1331436100
  26. Williams, P. A., J. Cosme, D. M. Vinkovic, A. Ward, H. C. Angove, P. J. Day, C. Vonrhein, I. J. Tickle, and H. Jhoti. 2004. Crystal structures of human cytochrome $P_{450}3AB_{4B}$bound to metyrapone and progesterone. Science 305: 683-686 https://doi.org/10.1126/science.1099736
  27. Xu, M., J. Guo, Y. Cen, X. Zhong, W. Cao, and G. Sun. 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from an activated sludge of a waste-water treatment plant. Int. J. Syst. Evol. Microbiol. 55: 363-368 https://doi.org/10.1099/ijs.0.63157-0

피인용 문헌

  1. Role of iron in azoreduction by resting cells of Shewanella decolorationis S12 vol.110, pp.2, 2009, https://doi.org/10.1111/j.1365-2672.2010.04913.x