DOI QR코드

DOI QR Code

Effect of Initial Glucose Concentrations on Carbon and Energy Balances in Hydrogen-Producing Clostridium tyrobutyricum JM1

  • Jo, Ji-Hye (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Dae-Sung (Department of Environmental Engineering, Kyungpook National University) ;
  • Kim, Jun-Hoon (Department of Chemical and Biological Engineering, University of Wisconsin-Madison) ;
  • Park, Jong-Moon (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering, Pohang University of Science and Technology)
  • Received : 2008.02.28
  • Accepted : 2008.07.16
  • Published : 2009.03.31

Abstract

The carbon metabolism of newly isolated Clostridium tyrobutyricum JM1 was investigated at varying initial glucose concentrations (27.8-333.6mM). Because an understanding of metabolic regulations was required to provide guidance for further effective metabolic design or optimization, in this case, maximizing hydrogen production, carbon and energy balances by C. tyrobutyricum JM1 were determined and applied in anaerobic glucose metabolism. The overall carbon distribution suggested that initial glucose concentrations had strong influence on the stoichiometric coefficients of products and the molar production of ATP on the formation of biomass. C. tyrobutyricum JM1 had a high capacity for hydrogen production at the initial glucose concentration of 222.4 mM with high concentrations of acetate and butyrate.

Keywords

References

  1. Angenent, L. T., K. Karim, M. H. Al-Dahhan, and R. Dom$\acute{i}$ https://doi.org/10.1016/j.tibtech.2004.07.001
  2. Balows, A., H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.). 1992. The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed. NY Springer-Verlag, New York
  3. Berrios-Rivera, S. J., Y.-T. Yang, G. N. Bennett, and K.-Y. San. 2000. Effect of glucose analog supplementation on metabolic flux distribution in anaerobic chemostat cultures of Escherichia coli. Metab. Eng. 2: 149-154 https://doi.org/10.1006/mben.1999.0141
  4. Chen, X., Y. Sun, Z. Xiu, X. Li, and D. Zhang. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy 31: 539-549 https://doi.org/10.1016/j.ijhydene.2005.03.013
  5. Converti, A. and P. Perego. 2002. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 59: 303-309 https://doi.org/10.1007/s00253-002-1009-5
  6. Converti, A., P. Perego, and M. Del Borghi. 2003. Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics:Carbon and reduction degree balances in batch cultivations. Biotechnol. Bioeng. 82: 370-377 https://doi.org/10.1002/bit.10570
  7. Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 164: 36-42
  8. Das, D., T. Dutta, K. Nath, S. M. Kotay, A. K. Das, and T. N. Veziroglu. 2006. Role of Fe-hydrogenase in biological hydrogen production. Curr. Sci. India 90: 1627-1637
  9. Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26: 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  10. Desai, R. P., L. M. Harris, N. E. Welker, and E. T. Papoutsakis. 1999. Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab. Eng. 1: 206-213 https://doi.org/10.1006/mben.1999.0118
  11. Desvaux, Micka$\ddot{e}$l., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66: 2461-2470 https://doi.org/10.1128/AEM.66.6.2461-2470.2000
  12. Dunn, S. 2002. Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 27: 235-264 https://doi.org/10.1016/S0360-3199(01)00131-8
  13. D$\ddot{u}$rre, P. 2005. Handbook on Clostridia. CRC Press, Taylor & Francis Group, Boca Raton, FL
  14. Fabiano, B. and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy 27: 149-156 https://doi.org/10.1016/S0360-3199(01)00102-1
  15. Gonz$\acute{a}$lez-Pajuelo, Mar$\acute{i}$a, I. Meynial-Salles, F. Mendes, J. C. Andrade, I. Vasconcelos, and P. Soucaille. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7:329-336 https://doi.org/10.1016/j.ymben.2005.06.001
  16. Guedon, E., S. Payot, M. Desvaux, and H. Petitdemange. 1999. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J. Bacteriol. 181:3262-3269
  17. Hallenbeck, P. C. 2005. Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52: 21-29
  18. Jo, J. H., D. S. Lee, D. Park, and J. M. Park. 2008. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from food waste treatment process. Bioresource Technol. 99: 6666-6672 https://doi.org/10.1016/j.biortech.2007.11.067
  19. Jo, J. H., D. S. Lee, and J. M. Park. 2008. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technol. 99:8485-8491 https://doi.org/10.1016/j.biortech.2008.03.060
  20. Jo, J. H., C. O. Jeon, D. S. Lee, and J. M. Park. 2007. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. J. Biotechnol. 131: 300-308 https://doi.org/10.1016/j.jbiotec.2007.07.492
  21. Kapdan, I. K. and F. Kargi. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582 https://doi.org/10.1016/j.enzmictec.2005.09.015
  22. Khanal, S. K., W. H. Chen, L. Li, and S. W. Sung. 2004. Biological hydrogen production: Effects of pH and intermediate products. Int. J. Hydrogen Energy 29: 1123-1131
  23. Kraemer, J. T. and D. M. Bagley. 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 29:685-695 https://doi.org/10.1007/s10529-006-9299-9
  24. Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68:269-278 https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
  25. Lee, Y. J., T. Miyahara, and T. Noike. 2002. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol. 77: 694-698 https://doi.org/10.1002/jctb.623
  26. Levin, D. B., L. Pitt, and M. Love. 2004. Biohydrogen production prospects and limitations to practical application. Int. J. Hydrogen Energy 29: 173-185 https://doi.org/10.1016/S0360-3199(03)00094-6
  27. Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529
  28. Nicolet, Y., C. Cavazza, and J. C. Fontecilla-Camps. 2002. Fe-only hydrogenases: Structure, function and evolution. J. Inorganic Biochem. 91: 1-8 https://doi.org/10.1016/S0162-0134(02)00392-6
  29. Oh, Y.-K., S. Park, E.-H. Seol, S. H. Kim, M.-S. Kim, J.-W. Hwang, and D. D. Y. Ryu. 2008. Carbon and Energy Balances of Glucose Fermentation with Hydrogenproducing Bacterium Citrobacter amalonaticus Y19. J. Microbiol. Biotechnol. 18: 532-538
  30. Payot, S., E. Guedon, C. Cailliez, E. Gelhaye, and H. Petitdemange. 1998. Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: Evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology 144: 375-384 https://doi.org/10.1099/00221287-144-2-375
  31. Pierik, A. J., M. Hulstein, W. R. Hagen, and S. P. Albracht. 1998. A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in Fe-hydrogenase. Eur. J. Biochem. 258: 572-578 https://doi.org/10.1046/j.1432-1327.1998.2580572.x
  32. Stams, A. J. M. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenheek 66: 271-294 https://doi.org/10.1007/BF00871644
  33. Stephanopoulos, G.., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA
  34. Van Ginkel, S., S. Sung, and J. J. Lay. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730 https://doi.org/10.1021/es001979r
  35. Zeng, A.-P., H. Biebl, H. Schlieker, and W.-D. Deckwer. 1993. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: Regulation of reducing equivalent balance and product formation. Enzyme Microb. Technol. 15: 770-779 https://doi.org/10.1016/0141-0229(93)90008-P
  36. Zeng, A.-P., A. Ross, and W.-D. Deckwer. 1990. A method to estimate the efficiency of oxidative phosphorylation and biomass yield from ATP of a facultative anaerobe in continuous culture. Biotechnol. Bioeng. 36: 965-969 https://doi.org/10.1002/bit.260360912
  37. Zhang, T., H. Liu, and H. H. P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic conditions. J. Environ. Manage. 69: 149-156 https://doi.org/10.1016/S0301-4797(03)00141-5
  38. Zhu, Y. and S.-T. Yang. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J. Biotechnol. 110: 143-157 https://doi.org/10.1016/j.jbiotec.2004.02.006

Cited by

  1. Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: Effect of pH and glucose concentrations vol.35, pp.13, 2009, https://doi.org/10.1016/j.ijhydene.2010.04.097
  2. A comprehensive and quantitative review of dark fermentative biohydrogen production vol.11, pp.None, 2009, https://doi.org/10.1186/1475-2859-11-115
  3. The Future of Butyric Acid in Industry vol.2012, pp.None, 2009, https://doi.org/10.1100/2012/471417