References
-
Angenent, L. T., K. Karim, M. H. Al-Dahhan, and R. Dom
$\acute{i}$ https://doi.org/10.1016/j.tibtech.2004.07.001 - Balows, A., H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.). 1992. The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed. NY Springer-Verlag, New York
- Berrios-Rivera, S. J., Y.-T. Yang, G. N. Bennett, and K.-Y. San. 2000. Effect of glucose analog supplementation on metabolic flux distribution in anaerobic chemostat cultures of Escherichia coli. Metab. Eng. 2: 149-154 https://doi.org/10.1006/mben.1999.0141
- Chen, X., Y. Sun, Z. Xiu, X. Li, and D. Zhang. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy 31: 539-549 https://doi.org/10.1016/j.ijhydene.2005.03.013
- Converti, A. and P. Perego. 2002. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 59: 303-309 https://doi.org/10.1007/s00253-002-1009-5
- Converti, A., P. Perego, and M. Del Borghi. 2003. Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics:Carbon and reduction degree balances in batch cultivations. Biotechnol. Bioeng. 82: 370-377 https://doi.org/10.1002/bit.10570
- Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 164: 36-42
- Das, D., T. Dutta, K. Nath, S. M. Kotay, A. K. Das, and T. N. Veziroglu. 2006. Role of Fe-hydrogenase in biological hydrogen production. Curr. Sci. India 90: 1627-1637
- Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26: 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
- Desai, R. P., L. M. Harris, N. E. Welker, and E. T. Papoutsakis. 1999. Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab. Eng. 1: 206-213 https://doi.org/10.1006/mben.1999.0118
-
Desvaux, Micka
$\ddot{e}$ l., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66: 2461-2470 https://doi.org/10.1128/AEM.66.6.2461-2470.2000 - Dunn, S. 2002. Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 27: 235-264 https://doi.org/10.1016/S0360-3199(01)00131-8
-
D
$\ddot{u}$ rre, P. 2005. Handbook on Clostridia. CRC Press, Taylor & Francis Group, Boca Raton, FL - Fabiano, B. and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy 27: 149-156 https://doi.org/10.1016/S0360-3199(01)00102-1
-
Gonz
$\acute{a}$ lez-Pajuelo, Mar$\acute{i}$ a, I. Meynial-Salles, F. Mendes, J. C. Andrade, I. Vasconcelos, and P. Soucaille. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7:329-336 https://doi.org/10.1016/j.ymben.2005.06.001 - Guedon, E., S. Payot, M. Desvaux, and H. Petitdemange. 1999. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J. Bacteriol. 181:3262-3269
- Hallenbeck, P. C. 2005. Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52: 21-29
- Jo, J. H., D. S. Lee, D. Park, and J. M. Park. 2008. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from food waste treatment process. Bioresource Technol. 99: 6666-6672 https://doi.org/10.1016/j.biortech.2007.11.067
- Jo, J. H., D. S. Lee, and J. M. Park. 2008. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technol. 99:8485-8491 https://doi.org/10.1016/j.biortech.2008.03.060
- Jo, J. H., C. O. Jeon, D. S. Lee, and J. M. Park. 2007. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. J. Biotechnol. 131: 300-308 https://doi.org/10.1016/j.jbiotec.2007.07.492
- Kapdan, I. K. and F. Kargi. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582 https://doi.org/10.1016/j.enzmictec.2005.09.015
- Khanal, S. K., W. H. Chen, L. Li, and S. W. Sung. 2004. Biological hydrogen production: Effects of pH and intermediate products. Int. J. Hydrogen Energy 29: 1123-1131
- Kraemer, J. T. and D. M. Bagley. 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 29:685-695 https://doi.org/10.1007/s10529-006-9299-9
- Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68:269-278 https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
- Lee, Y. J., T. Miyahara, and T. Noike. 2002. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol. 77: 694-698 https://doi.org/10.1002/jctb.623
- Levin, D. B., L. Pitt, and M. Love. 2004. Biohydrogen production prospects and limitations to practical application. Int. J. Hydrogen Energy 29: 173-185 https://doi.org/10.1016/S0360-3199(03)00094-6
- Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529
- Nicolet, Y., C. Cavazza, and J. C. Fontecilla-Camps. 2002. Fe-only hydrogenases: Structure, function and evolution. J. Inorganic Biochem. 91: 1-8 https://doi.org/10.1016/S0162-0134(02)00392-6
- Oh, Y.-K., S. Park, E.-H. Seol, S. H. Kim, M.-S. Kim, J.-W. Hwang, and D. D. Y. Ryu. 2008. Carbon and Energy Balances of Glucose Fermentation with Hydrogenproducing Bacterium Citrobacter amalonaticus Y19. J. Microbiol. Biotechnol. 18: 532-538
- Payot, S., E. Guedon, C. Cailliez, E. Gelhaye, and H. Petitdemange. 1998. Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: Evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology 144: 375-384 https://doi.org/10.1099/00221287-144-2-375
- Pierik, A. J., M. Hulstein, W. R. Hagen, and S. P. Albracht. 1998. A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in Fe-hydrogenase. Eur. J. Biochem. 258: 572-578 https://doi.org/10.1046/j.1432-1327.1998.2580572.x
- Stams, A. J. M. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenheek 66: 271-294 https://doi.org/10.1007/BF00871644
- Stephanopoulos, G.., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA
- Van Ginkel, S., S. Sung, and J. J. Lay. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730 https://doi.org/10.1021/es001979r
- Zeng, A.-P., H. Biebl, H. Schlieker, and W.-D. Deckwer. 1993. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: Regulation of reducing equivalent balance and product formation. Enzyme Microb. Technol. 15: 770-779 https://doi.org/10.1016/0141-0229(93)90008-P
- Zeng, A.-P., A. Ross, and W.-D. Deckwer. 1990. A method to estimate the efficiency of oxidative phosphorylation and biomass yield from ATP of a facultative anaerobe in continuous culture. Biotechnol. Bioeng. 36: 965-969 https://doi.org/10.1002/bit.260360912
- Zhang, T., H. Liu, and H. H. P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic conditions. J. Environ. Manage. 69: 149-156 https://doi.org/10.1016/S0301-4797(03)00141-5
- Zhu, Y. and S.-T. Yang. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J. Biotechnol. 110: 143-157 https://doi.org/10.1016/j.jbiotec.2004.02.006
Cited by
- Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: Effect of pH and glucose concentrations vol.35, pp.13, 2009, https://doi.org/10.1016/j.ijhydene.2010.04.097
- A comprehensive and quantitative review of dark fermentative biohydrogen production vol.11, pp.None, 2009, https://doi.org/10.1186/1475-2859-11-115
- The Future of Butyric Acid in Industry vol.2012, pp.None, 2009, https://doi.org/10.1100/2012/471417