DOI QR코드

DOI QR Code

Listeria monocytogenes Serovar 4a is a Possible Evolutionary Intermediate Between L. monocytogenes Serovars 1/2a and 4b and L. innocua

  • Chen, Jianshun (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine) ;
  • Jiang, Lingli (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine) ;
  • Chen, Xueyan (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine) ;
  • Luo, Xiaokai (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine) ;
  • Chen, Yang (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine) ;
  • Yu, Ying (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine) ;
  • Tian, Guoming (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine) ;
  • Liu, Dongyou (College of Veterinary Medicine, Mississippi State University) ;
  • Fang, Weihuan (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
  • Received : 2008.05.02
  • Accepted : 2008.07.14
  • Published : 2009.03.31

Abstract

The genus Listeria consists of six closely related species and forms three phylogenetic groups: L. monocytogenes-L. innocua, L. ivanovii-L. seeligeri-L. welshimeri, and L. grayi. In this report, we attempted to examine the evolutionary relationship in the L. monocytogenes-L. innocua group by probing the nucleotide sequences of 23S rRNA and 16S rRNA, and the gene clusters lmo0029-lmo0042, ascB-dapE, rplS-infC, and prs-ldh in L. monocytogenes serovars 1/2a, 4a, and 4b, and L. innocua. Additionally, we assessed the status of L. monocytogenes-specific inlA and inlB genes and 10 L. innocua-specific genes in these species/serovars, together with phenotypic characterization by using in vivo and in vitro procedures. The results indicate that L. monocytogenes serovar 4a strains are genetically similar to L. innocua in the lmo0035-lmo0042, ascB-dapE, and rplS-infC regions and also possess L. innocua-specific genes lin0372 and lin1073. Furthermore, both L. monocytogenes serovar 4a and L. innocua exhibit impaired intercellular spread ability and negligible pathogenicity in mouse model. On the other hand, despite resembling L. monocytogenes serovars 1/2a and 4b in having a nearly identical virulence gene cluster, and inlA and inlB genes, these serovar 4a strains differ from serovars 1/2a and 4b by harboring notably altered actA and plcB genes, displaying strong phospholipase activity and subdued in vivo and in vitro virulence. Thus, by possessing many genes common to L. monocytogenes serovars 1/2a and 4b, and sharing many similar gene deletions with L. innocua, L. monocytogenes serovar 4a represents a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua.

Keywords

References

  1. Brosch, R., J. Chen, and J. B. Luchansky. 1994. Pulsed-field fingerprinting of listeriae: Identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl. Environ. Microbiol. 60: 2584-2592
  2. Buchrieser, C. and C. Rusniok, The Listeria Consortium, F. Kunst, P. Cossart, and P. Glaser. 2003. Comparison of the genomes sequences of Listeria monocytogenes and Listeria innocua: Clues for evolution and pathogenicity. FEMS Immunol. Med. Microbiol. 35: 207-213 https://doi.org/10.1016/S0928-8244(02)00448-0
  3. Buchrieser, C. 2007. Biodiversity of the species Listeria monocytogenes and the genus Listeria. Microbes Infect. 9:1147-1155 https://doi.org/10.1016/j.micinf.2007.05.002
  4. Chen, J., L. Jiang, and W. Fang, 2007. Virulence determinants and its evolution of the genus Listeria. Acta Microbiol. Sin. 47:738-742
  5. Doumith, M., C. Cazalet, N. Simoes, L. Frangeul, C. Jacquet, F. Kunst, et al. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72: 1072-1083 https://doi.org/10.1128/IAI.72.2.1072-1083.2004
  6. Ermolaeva, S., T. Karpova, S. Novella, M. Wagner, M. Scortti, I. Tartakovskii, and J. A. Vazquez-Boland. 2003. A simple method for the differentiation of Listeria monocytogenes on induction of lecithinase activity by charcoal. Int. J. Food Microbiol. 82: 87-94 https://doi.org/10.1016/S0168-1605(02)00399-9
  7. Fiedler, F. 1988. Biochemistry of the cell surface of Listeria strains: A locating general view. Infection 16: 92-97 https://doi.org/10.1007/BF01639729
  8. Geoffroy, C., J. L. Gaillard, J. E. Alouf, and P. Berche. 1989. Production of thiol-dependent haemolysins by Listeria monocytogenes and related species. J. Gen. Microbiol. 135:481-487
  9. Geoffroy, C., J. Raveneau, J. L. Beretti, A. Lecroisey, J. A. Vazquez-Boland, J. E. Alouf, and P. Berche. 1991. Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes. Infect. Immun. 59: 2382-2388
  10. Glaser, P., L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend, F. Baquero, et al. 2001. Comparative genomics of Listeria species. Science 294: 849-852
  11. Gouin, E., J. Mengaud, and P. Cossart. 1994. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect. Immun. 62: 3550-3553
  12. Goulet, V., C. Jacquet, P. Martin, V. Vaillant, E. Laurent, and H. de Valk. 2006. Surveillance of human listeriosis in France, 2001-2003. Euro. Surveill. 11: 79-81
  13. Hain, T., C. Steinweg, C. T. Kuenne, A. Billion, R. Ghai, S. S. Chatterjee, et al. 2006. Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J. Bacteriol. 188: 7405-7415 https://doi.org/10.1128/JB.00758-06
  14. Hain, T., C. Steinweg, and T. Chakraborty. 2006. Comparative and functional genomics of Listeria spp. J. Biotechol. 126: 37-51 https://doi.org/10.1016/j.jbiotec.2006.03.047
  15. Hain, T., S. S. Chatterjee, R. Ghai, C. T. Kuenne, A. Billionm, C. Steinweg, et al. 2007. Pathogenomics of Listeria spp. Int. J. Med. Microbiol. 297: 541-557 https://doi.org/10.1016/j.ijmm.2007.03.016
  16. Jiang, L., J. Xu, N. Chen, J. Shuai, and W. Fang. 2006. Virulence phenotyping and molecular characterization of a low-pathogenic Listeria monocytogenes from cow's milk. Acta Biochim. Biophys. Sin. 38: 262-270 https://doi.org/10.1111/j.1745-7270.2006.00161.x
  17. Jiang, L., J. Chen, J. Xu, X. Zhang, S. Wang, H. Zhao, K. Vongxay, and W. Fang. 2008. Virulence characterization and genotypic analyses of Listeria monocytogenes isolates from foodand processing environments in eastern China. Int. J. FoodMicrobiol. 121: 53-59 https://doi.org/10.1016/j.ijfoodmicro.2007.10.007
  18. Johnson, J., K. Jinneman, G. Stelma, B. G. Smith, D. Lye, J. Messer, et al. 2004. Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl. Environ. Microbiol. 70: 4256-4266 https://doi.org/10.1128/AEM.70.7.4256-4266.2004
  19. Liu, D. 2004. Listeria monocytogenes: Comparative interpretation of mouse virulence assay. FEMS. Microbiol. Lett. 233: 159-164 https://doi.org/10.1016/j.femsle.2004.02.005
  20. Liu, D. 2006. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J. Med. Microbiol. 55: 645-659 https://doi.org/10.1099/jmm.0.46495-0
  21. Liu, D., M. L. Lawrence, M. Wiedmann, L. Gorski, R. E. Mandrell, A. J. Ainsworth, and F. W. Austin. 2006. Listeria monocytogenes subgroups IIIA, IIIB and IIIC delineate genetically distinct populations with varied virulence potential. J. Clin. Microbiol. 44: 4229-4233 https://doi.org/10.1128/JCM.01032-06
  22. Liu, D., M. L. Lawrence, A. J. Ainsworth, and F. W. Austin. 2007. Toward an improved laboratory definition of Listeria monocytogenes virulence. Int. J. Food Microbiol. 118: 101-115 https://doi.org/10.1016/j.ijfoodmicro.2007.07.045
  23. Liu, D., M. L. Lawrence, A. J. Ainsworth, and F. W. Austin. 2007. A multiplex PCR assay for species- and virulence-specific determination of Listeria monocytogenes virulence. J. Microbiol. Methods 71: 133-140 https://doi.org/10.1016/j.mimet.2007.08.007
  24. Liu, D., M. L. Lawrence, and A. D. Hitchins. 2008. Molecular characterization of Listeria monocytogenes strains harboring L. innocua putative transcriptional regulator gene lin0464. J. Rapid Meth. Aut. Mic. [In Press]
  25. Mahillon, J. and M. Chandler. 1998. Insertion sequence. Microbiol. Mol. Biol. Rev. 62: 725-774
  26. Moran, N. A. 2003. Tracing the evolution of gene loss in obligate bacterial symbionts. Curr. Opin. Microbiol. 6: 512-518 https://doi.org/10.1016/j.mib.2003.08.001
  27. Moriishi, K., M. Terao, M. Kuora, and S. Inoue. 1998. Sequence analysis of the actA gene of Listeria monocytogenes isolated from human. Microbiol. Immunol. 42: 129-132 https://doi.org/10.1111/j.1348-0421.1998.tb02261.x
  28. Nelson, K. E., D. E. Fouts, E. F. Mongodin, J. Ravel, R. T. DeBoy, J. F. Kolonay, et al. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32:2386-2395 https://doi.org/10.1093/nar/gkh562
  29. Roche, S. M., P. Gracieux, E. Milohanic, I. Albert, I. Virlogeux-Pavant, S. Temon, et al. 2005. Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of Listeria monocytogenes. Appl. Environ. Microbiol. 71: 6039-6048 https://doi.org/10.1128/AEM.71.10.6039-6048.2005
  30. Sabet, C., M. Lecuit, D. Cabanes, P. Cossart, and H. Biene. 2005. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect. Immun. 73: 6912-6922 https://doi.org/10.1128/IAI.73.10.6912-6922.2005
  31. Sallen, B., A. Rajoharison, S. Desvarenne, F. Quinn, and C. Mabilat. 1996. Comparative analysis of 16S rRNA and 23S rRNA sequences of Listeria species. Int. J. Syst. Bacteriol. 46: 669-674 https://doi.org/10.1099/00207713-46-3-669
  32. Schmid, M. W., E. Y. W. Ng, R. Lampidis, M. Emmerth, M. Walcher, J. Kreft, W. Goebel, M. Wanger, and K. Schleifer. 2005. Evolutionary history of the genus Listeria and its virulence genes. Syst. Appl. Microbiol. 28: 1-18 https://doi.org/10.1016/j.syapm.2004.09.005
  33. Sekizaki, T., D. Takamatsu, M. Osaki, and Y. Shimoji. 2005. Different foreign genes incidentally integrated into the same locus of the Streptococcus suis genome. J. Bacteriol. 187: 872-883 https://doi.org/10.1128/JB.187.3.872-883.2005
  34. Sokolovic, Z., S. Schuller, J. Bohne, A. Baur, U. Rdest, C. Dickneite, T. Nichterlein, and W. Goebel. 1996. Differences in virulence and in expression of PrfA and PrfA-regulated virulence genes of Listeria monocytogenes strains belonging to serogroup 4. Infect. Immun. 64: 4008-4019
  35. Takamatsu, D., M. Osaki, and T. Sekizaki. 2002. Evidence for lateral transfer of the suilysin gene region of Streptococcus suis. J. Bacteriol. 184: 2050-2057 https://doi.org/10.1128/JB.184.7.2050-2057.2002
  36. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 https://doi.org/10.1093/molbev/msm092
  37. Vazquez-Boland, J. A., M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, B. Gonzalez-Zorn, J. Wehland, and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14: 584-640 https://doi.org/10.1128/CMR.14.3.584-640.2001
  38. Volokhov, D. V., J. George, C. Anderson, R. E. Duvall, and A. D. Hitchins. 2006. Discovery of natural atypical nonhemolytic Listeria seeligeri isolates. Appl. Environ. Microbiol. 72: 2439-2448 https://doi.org/10.1128/AEM.72.4.2439-2448.2006
  39. Volokhov, D. V., S. Duperrier, A. A. Neverov, J. George, C. Buchrieser, and A. D. Hitchins. 2007. Internalin gene in natural atypical hemolytic Listeria innocua strains suggests descent from L. monocytogenes. Appl. Environ. Microbiol. 73: 1928-1939 https://doi.org/10.1128/AEM.01796-06
  40. Ward, T. J., L. Gorski, M. K. Borucki, R. E. Mandrell, J. Hutchins, and K. Pupedis. 2004. Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J. Bacteriol. 186: 4994-5002 https://doi.org/10.1128/JB.186.15.4994-5002.2004
  41. Zeng, H., X. Zhang, Z. Sun, and W. Fang. 2006. Multiplex PCR identification of Listeria monocytogenes isolates from milk and milk-processing environments. J. Food Sci. Agric. 86: 367-371 https://doi.org/10.1002/jsfa.2352

Cited by

  1. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes vol.10, pp.None, 2009, https://doi.org/10.1186/1471-2180-10-97
  2. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance vol.157, pp.11, 2009, https://doi.org/10.1099/mic.0.049619-0
  3. Genetic Organization of ascB-dapE Internalin Cluster Serves as a Potential Marker for Listeria monocytogenes Sublineages IIA, IIB, and IIC vol.22, pp.5, 2009, https://doi.org/10.4014/jmb.1110.10056
  4. Genetic diversity of internalin genes in the ascBdapE locus among Listeria monocytogenes lineages III and IV strains vol.53, pp.9, 2013, https://doi.org/10.1002/jobm.201200137
  5. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome vol.14, pp.None, 2013, https://doi.org/10.1186/1471-2164-14-47
  6. Listeria monocytogenes aguA1, but Not aguA2, Encodes a Functional Agmatine Deiminase : BIOCHEMICAL CHARACTERIZATION OF ITS CATALYTIC PROPERTIES AND ROLES IN ACID TOLERANCE vol.288, pp.37, 2009, https://doi.org/10.1074/jbc.m113.477380
  7. Phylogenetic analysis of the Listeria monocytogenes based on sequencing of 16S rRNA and hlyA genes vol.41, pp.12, 2009, https://doi.org/10.1007/s11033-014-3724-2
  8. Activation of PrfA results in overexpression of virulence factors but does not rescue the pathogenicity of Listeria monocytogenes M7 vol.64, pp.8, 2009, https://doi.org/10.1099/jmm.0.000101