Characterization of a Psychrophilic Metagenome Esterase EM2L8 and Production of a Chiral Intermediate for Hyperlipemia Drug

메타게놈유래의 저온성 에스터라제 EM2L8의 효소적 특성과 이를 활용한 고지혈증 치료제 키랄소재의 생산

  • Jung, Ji-Hye (Division of Biotechnology, The Catholic University of Korea) ;
  • Choi, Yun-Hee (Division of Biotechnology, The Catholic University of Korea) ;
  • Lee, Jung-Hyun (Marine Biotechnology Research Centre, KORDI) ;
  • Kim, Hyung-Kwoun (Division of Biotechnology, The Catholic University of Korea)
  • Received : 2009.03.19
  • Accepted : 2009.05.25
  • Published : 2009.06.28

Abstract

Esterase EM2L8 gene isolated from deep sea sediment was expressed in Escherichia coli BL21 (DE3) and the esterase activity of the cell-free extract was assayed using p-nitrophenyl butyrate-spectrophotometric method. Its optimum temperature was $40-45^{\circ}C$ and 45% activity of the maximum activity was retained at $15^{\circ}C$. The activation energy at $15-45^{\circ}C$ was calculated to be 4.9 kcal/mol showing that esterase EM2L8 was a typical cold-adapted enzyme. Enzyme activity was maintained for 6 h and 4 weeks at $30^{\circ}C$ and $4^{\circ}C$, respectively. When each ethanol, methanol, and acetone was added to the reaction mixture to 15% concentration, enzyme activity was maintained. In the case of DMSO, enzyme activity was kept up to 40% concentration. (S)-4-Chloro-3-hydroxy butyric acid is a chiral intermediate for the synthesis of Atorvastatin, a hyperlipemia drug. When esterase EM2L8 (40 U) was added to buffer solution (1.2 mL, pH 9.0) containing ethyl-(R,S)-4-chloro-3-hydroxybutyrate (38 mM), it was hydrolyzed into 4-chloro-3-hydroxy butyric acid with a rate of $6.8\;{\mu}mole/h$. The enzyme hydrolyzed (S)-substrate more rapidly than (R)-substrate. When conversion yield was 80%, e.e.s value was 40%. When DMSO was added, hydrolysis rate increased to $10.4\;{\mu}mole/h$. The plots of conversion yield vs e.e.s in the presence or absence of DMSO were almost same, implying that the reaction enantioselectivity was not changed by the addition of DMSO. Taken together, esterase EM2L8 had high activity and stability at low temperatures as well as in various organic solvents/aqueous solutions. These properties suggested that it could be used as a biocatalyst in the synthesis of useful pharmaceuticals.

에스터라제 EM2L8 유전자를 E. coli 균에서 발현하고 에스터라제 활성을 분석한 결과, $40-45^{\circ}C$에서 최적의 효소활성을 보였다. $15^{\circ}C$에서 최대활성의 45% 활성을 보였고 $15-45^{\circ}C$ 사이의 활성화에너지는 4.9 kcal/mol로 계산됨으로써 전형적인 저온 적응효소인 것으로 밝혀졌다. 또한, $4^{\circ}C$에서 장기보관해도 효소활성이 전혀 줄어들지 않음을 통해서 저온에서 안정한 효소임을 알게 되었다. 반응액에 에탄올, 메탄올, 아세톤을 15% 농도까지 첨가해도 효소활성이 줄어들지 않았으며 DMSO의 경우, 40% 농도까지 첨가해도 효소활성이 유지되는 것으로 나타났다. 이 효소 40 U을 Tris-HCl 용액(1.2 mL, pH 9.0)에 넣고 $30^{\circ}C$에서 (R,S)-ECHB(0.5%, 38 mM)의 분해반응을 수행한 결과, 기질이 가수분해되어 CHBacid가 생성되며 기질의 분해속도는 $6.8\;{\mu}mole/h$로 계산되었다. (R)-ECHB 보다 (S)-ECHB 기질을 빠르게 분해하였으며 전환수율이 80%일 때, e.e.s 값이 40%로 측정되었다. 반응액에 DMSO를 10% (v/v) 농도로 각각 첨가한 결과, 기질의 분해 속도는 $10.4\;{\mu}mole/h$로 증가되었다. 하지만 DMSO의 유무와 상관없이 전환수율에 따른 e.e.s 값은 유사하게 나타났다. 결론적으로 이 효소는 저온과 각종 유기용매 하에서도 높은 안정성과 활성을 갖고 있기 때문에 각종 의약품의 유기합성공정에서 효소촉매로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Choi, Y. H., K. N. Uhm, and H. K. Kim. 2008. Biochemical characterization of Rhodococcus erythropolis N'4 nitrile hydratase acting on 4-chloro-3-hydroxybutyronitrile. J. Molecul. Catal. B: Enzym. 55: 157-163 https://doi.org/10.1016/j.molcatb.2008.03.010
  2. Daniel, R. 2004. The soil metagenome-a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204 https://doi.org/10.1016/j.copbio.2004.04.005
  3. Demirjian, D. C., F. Moris-Varas, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin, Chem. Biol. 5: 144-151 https://doi.org/10.1016/S1367-5931(00)00183-6
  4. Elend, C., C. Schmeisser, C. Leggewie, P. Babiak, J. D. Carballeira, H. L. Steele, J. L. Reymond, K. E. Jaeger, and W. R. Streit. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72: 3637-3645 https://doi.org/10.1128/AEM.72.5.3637-3645.2006
  5. Ferre, M., F. Martinez-Abarca, and P. N. Golyshin. 2005. Mining genomes and 'metagenomes' for novel catalysts. Curr. Opin. Biotechnol. 16: 588-593 https://doi.org/10.1016/j.copbio.2005.09.001
  6. Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103-107 https://doi.org/10.1016/S0167-7799(99)01413-4
  7. Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781 https://doi.org/10.1007/s00253-004-1568-8
  8. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotehnol. 13: 390-397 https://doi.org/10.1016/S0958-1669(02)00341-5
  9. Jeon, J. H., J. T. Kim, Y. J. Kim, H. K. Kim, H. S. Lee, S. G. Kang, S. J. Kim, and J. H. Lee. 2009. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl. Microbiol. Biotechnol. 81: 865-874 https://doi.org/10.1007/s00253-008-1656-2
  10. Joseph, B., P. W. Ramteke, and G. Thomas. 2008. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. adv. 26: 457-470 https://doi.org/10.1016/j.biotechadv.2008.05.003
  11. Kim, Y. J., G. S. Choi, S. B. Kim, G. S. Yoon, Y. S. Kim, and Y. W. Ryu. 2006. Screening and characterization of a novel esterase from a metagenomic library. Protein Expres. Purif. 45: 315-323 https://doi.org/10.1016/j.pep.2005.06.008
  12. Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of GlyPro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65 https://doi.org/10.1016/j.bbapap.2003.09.008
  13. Park, H. J., J. H. Jeon, S. G. Kang, J. H. Lee, S. A. Lee, and H. K. Kim. 2007. Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr Purif. 52: 340-347 https://doi.org/10.1016/j.pep.2006.10.010
  14. Park, H. J., K. N. Uhm, and H. K. Kim, 2008. R-Stereoselective amidase from Rhodococcus erythrophlis No.7 acting on 4-chloro-3-hydroxybutyramide. J. Microbiol. Biotechnol. 18: 552-559
  15. Russell, N. 2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4: 83-90 https://doi.org/10.1007/s007920050141
  16. Ryu, H. S., H. K. Kim, W. C. Choi, M. H. Kim, S. Y. Park, N. S. Han, T. K. Oh, and J. K. Lee. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol. 70: 321-326 https://doi.org/10.1007/s00253-005-0058-y
  17. Streit, W. R., R. Daniel, and K. E. Jaeger. 2004. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Curr. Opin. Biotechnol. 15: 285-290 https://doi.org/10.1016/j.copbio.2004.05.006