Growth Suppression of Microcystis aeruginosa by Pseudomonas aeruginosa AJ1

Pseudomonas aeruginosa AJ1에 의한 Microcystis aeruginosa의 성장제어

  • Kim, Sun-Jung (Department of Biotechnology, Graduate School of Kyonggi University) ;
  • Lee, Sang-Seob (Department of Biotechnology, Graduate School of Kyonggi University)
  • 김선정 (경기대학교 일반대학원 생명공학과) ;
  • 이상섭 (경기대학교 일반대학원 생명공학과)
  • Received : 2009.12.01
  • Accepted : 2009.12.28
  • Published : 2009.12.31

Abstract

Among total 176 strains with antialgal effects isolated from So-ok stream in Korea, Pseudomonas aeruginosa AJ1 showed the highest removal efficiency for an algal species Microcystis aeruginosa (clear zone of diameter 50.0 mm on algal lawn after 20 days). The algal growth was suppressed even when the supernatant of AJ1 culture was applied, suggesting that extracellular substances are responsible for its antialgal activity. The removal activity of AJ1 was optimal under the following condition: pH 8, $30^{\circ}C$, and mannitol as a carbon source. The antialgal activity of AJ1 appeared to be dependent of the growth phase of M. aeruginosa, i.e., the highest at the early phase, but not its own phase. As expected, the algicidal effect was improved as the amount of the treated supernatant was increased; the highest removal efficiency (80.3%) was achieved when 40 ml/L of the supernatant was used. Interestingly, however, the removal rate was opposite. The highest removal rate ($8.2{\mu}g$ chl-a/ml supernatant/day) was achieved when low concentration (10 ml/L) was applied. These results suggest that P. aeruginosa AJ1 is a promising biological agent to control the problematic algal bloom.

대청호의 한 지류인 소옥천으로부터 고효율 조류억제 세균을 분리하기 위하여 176균주를 분리 스크린하였으며, 이 중 AJ1이 가장 높은 조류성장억제능을 나타내었다(지름 50.0 mm 성장억제환). 조류성장억제능이 높았던 AJ1 균주 동정을 위하여 형태학적, 생리 생화학적, 16S rRNA gene sequence 분석, 지방산 분석을 수행하였으며 그 결과, Pseudomonas aeruginosa 로 판별되었다. AJ1 배양액을 원심분리한 후 상등액을 조류배양액에 첨가 시, 상등액에 의한 조류성장억제능이 나타남에 따라 세포 외 물질 분비에 의한 것을 확인할 수 있었다. 가장 높은 조류성장억 제능[60.2(${\pm}$1.3)%]은 탄소원으로 mannitol을 사용하고, 온도 $30^{\circ}C$, pH 8에서 배양할 때 보였다. 또한, AJ1 균주의 배양기간 및 투여시기에 따른 조류성장억제능 평가 결과, 조류 성장 초기 단계에 조류성장억제균을 투여하였을 때 조류성장억제능이 높게 나타났고, 균주의 배양기간에 따른 조류성장억제능은 연관성이 나타나지 않았다. 상등액 접종량에 따른 조류성장억제능은 상등액의 접종량이 높아질수록 M. aeruginosa의 제거량은 증가하였으며, 고농도(40ml/L)로 적용하였을 때 80.3(${\pm}$8.6)%의 가장 높은 M. aeruginosa 제거효율을 보여주었다. 제거 속도의 경우 상등액 접종량이 낮아질수록 M. aeruginosa 제거율이 높아지는 경향을 확인하였으며, 저농도(10 ml/L)로 적용시 $8.2{\mu}g$ chl-a/supernatant ml/day로 가장 높게 나타났다. 본 연구 결과, AJ1 균주의 현장 적용 시 M. aeruginosa의 제어에 효율적일 것으로 사료된다.

Keywords

References

  1. 박혜경. 2007. 수자원 관리를 위한 조류 분석법. 대한환경공학회지 29, 593-609
  2. 이태형, 임평옥, 이용억. 2007. Paenibacillus sp. DG-22에서의 $\beta$-xylosidase 생합성 조절. 생명과학회지 17, 407-411 https://doi.org/10.5352/JLS.2007.17.3.407
  3. 장은희, 김정동, 한명수. 2003. 남조류 분해세균 HY0210-AK1의 분리와 특성 및 Anabaena cylindrical 분해 활성. 한국환경생물학회 21, 194-202
  4. APHA. 2000. Standard methods of the examination of water and wastewater, 20th edition. American Public Health Association, American Water Works Association, Washington, D.C., USA
  5. Atlas, R.M. 2004. Handbook of microbiological media, 3rd ed., p. 1,500. CRC press
  6. Berger, P.S., J. Rho, and H.B. Gunner. 1979. Bacterial suppression of Chlorella by hydroxylamine production. Water Res. 13, 267-273 https://doi.org/10.1016/0043-1354(79)90205-7
  7. Brenner, D.J., N.R. Krieg, and J.T. Staley. 2005. Bergey's manual of systematic bacteriology, pp. 354-358. 2nd ed., The Williams and Wilkins Co., Baltimore, Maryland, USA
  8. Carmichael, W.W. 2001. Health effects of toxin-producing Cyanobacteria: "The CyanoHABs". Hum. Ecol. Risk Assess. 7, 1393-1407 https://doi.org/10.1080/20018091095087
  9. Choi, H.J., B.H. Kim, J.D. Kim, and M.S. Han. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol. Control. 33, 335-343 https://doi.org/10.1016/j.biocontrol.2005.03.007
  10. Dakhama, A., J. Noüe, and M.C. Lavoie. 1993. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J. Appl. Phycol. 5, 297-306 https://doi.org/10.1007/BF02186232
  11. Kim, C.H., Y.K. Choi, and B.R. Min. 1997. Lysis of Anabaena cylindrical (Cyanobacterium) cell wall by extracellular enzymes of Moraxella sp. CK-1. Kor. J. Environ. Biol. 15, 89-97
  12. Kim, J.D. and M.S. Han. 2003. Identification of alga-lytic bacterium AK-07 and its enzyme activities associated with degradability of cyanobacterium Anabaena cylindrical. Kor. J. Limnol. 36, 108-116
  13. Kim, J.D. and M.S. Han. 2004. Characterization of a novel algalytic bacterium, Acidovorax temperans AK-05, isolated from an eutrophic lake for degradation of Anabaena cylindrical. Kor. J. Limnol. 37, 241-247
  14. Kim, J.D. and C.G. Lee. 2007. Purification and characterization of extracellular β-glucosidase from Sinorhizobium kostiense AFK-13 and its algal lytic effect on Anabaena flos-aquae. J. Microbiol. Biotechnol. 17, 745-752
  15. Kodani, S., A. Imoto, A. Mitsutani, and M. Murakami. 2002. Isolation and identification of the antialgal compound, harmane (1-methyl-$\beta$-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14, 109-114 https://doi.org/10.1023/A:1019533414018
  16. Mu, R.M., Z.Q. Fan, H.Y. Pei, X.L. Yuan, S.X. Liu, and X.R. Wang. 2007. Isolation and algae-lysing characteristics of the algicidal bacterium B5. J. Environ. Sci. (China) 19, 1336-1340 https://doi.org/10.1016/S1001-0742(07)60218-6
  17. Nakamura, N., K. Nakano, N. Sugiura, and M. Matsumura. 2003. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a eutrophic lake. J. Biosci. Bioeng. 95, 179-184 https://doi.org/10.1263/jbb.95.179
  18. Provasoli, L., J.J.A. McLaughlin, and M.R. Droop. 1957. The development of artificial media for marine algae. Arch. Mikrobiol. 25, 392-428 https://doi.org/10.1007/BF00446694
  19. Rinehart, K.L., M. Namikoshi, and B.W. Choi. 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol. 6, 159-176 https://doi.org/10.1007/BF02186070
  20. Shi, S., Y. Liu, Y. Shen, G. Li, and D. Li. 2006. Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol. Control. 39, 345-351 https://doi.org/10.1016/j.biocontrol.2006.06.011
  21. Slater, G.P. and V.C. Blok. 1983. Volatile compounds of the Cyanophyceae. A review. Water Sci. Technol. 15, 181-190
  22. Watanabe, M.F., K.I. Harada, W.W. Carmichael, and H.I. Fujiki. 1995. Toxic microcystis. CRC Press 103-148
  23. Yamamoto, Y., S. Niizuma, N. Kuroda, and M. Sakamoto. 1993. Occurrence of heterotrophic bacteria causing lysis of cyanobacteria in a eutrophic lake. J. Phycol. 41, 215-220
  24. Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida, and K. Harada. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J. Appl. Phycol. 10, 391-397 https://doi.org/10.1023/A:1008077414808
  25. Yu, T.S. 2004. Optimization of culture conditions for the production of pyrimidine nucleotide N-ribosidase from Pseudomonas oleovorans. Kor. J. Life Sci. 14, 608-613 https://doi.org/10.5352/JLS.2004.14.4.608