Extension of Group Interaction Modelling to predict chemorheology of curing thermosets

  • Altmann, Nara (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland) ;
  • Halley, Peter J. (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland) ;
  • Nicholson, Timothy M. (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland)
  • 투고 : 2008.10.27
  • 심사 : 2009.02.25
  • 발행 : 2009.06.30

초록

This paper describes an extension of viscoelastic Group Interaction Modelling (GIM) to predict the relaxation response of linear, branched and cross-linked structures. This model is incorporated into a Monte Carlo percolation grid simulation used to generate the topological structure during the isothermal cure of a gel, so enabling the chemorheological response to be predicted at any point during the cure. The model results are compared to experimental data for an epoxy-amine systems and good agreement is observed. The viscoelastic model predicts the same exponent power-law behaviour of the loss and storage moduli as a function of frequency and predicts the cross-over in the loss tangent at the percolation condition for gelation. The model also predicts the peak in the loss tangent which occurs when the glass transition temperature surpasses the isothermal cure temperature and the system vitrifies.

키워드

참고문헌

  1. Adolf, D., J. E. Martin and J. P. Wilcoxon, 1990, Evolution of Structure and Viscoelasticity in an Epoxy near the Sol-Gel Transition, Macromolecules, 23, 527-531 https://doi.org/10.1021/ma00204a028
  2. Adolf, D. B., J. E. Martin, R. S. Chambers, S. N. Burchett and T. R. Guess, 1998, Stresses during thermoset cure, J. of Materials Research, 13, 530-550 https://doi.org/10.1557/JMR.1998.0069
  3. Altmann, N., 2002. A model for the chemorheological behaviour of thermoset polymers. University of Queensland. Brisbane, Australia
  4. Altmann, N., P. J. Halley and T. M. Nicholson, 2007, Dynamic Percolation Grid Monte Carlo Simulation, Korea-Australia Rheology J., 19, 7-16
  5. Bicerano, J., 1993, Prediction of Polymer Properties, Marcel Dekker, New York
  6. Carella, J. M., J. T. Gotro and W. W. Graessley, 1986, Thermorheological Effects of Long-Chain Branching in Entangled Polymer Melts, Macromolecules, 19, 659-667 https://doi.org/10.1021/ma00157a031
  7. de Gennes, P. G., 1971, Reptation of a polymer chain in the presence of fixed obstacles, J. of Chemical Physics, 55, 572-579 https://doi.org/10.1063/1.1675789
  8. Doi, M. and S. F. Edwards, 1978, Dynamics of Concentrated Polymer Systems, Journal of the Chemical Society-Faraday Transactions Ii, 74, 1789-1832 https://doi.org/10.1039/f29787401789
  9. Doi, M. and N. Y. Kuzuu, 1980, Rheology of Star Polymers in Concentrated-Solutions and Melts, J. of Polymer Science Part C-Polymer Letters, 18, 775-780 https://doi.org/10.1002/pol.1980.130181205
  10. Dotson, N. A., R. Galvan, R. L. Laurence and M. Tirrel, 1996, Polymerization Process Modeling, VCH Publishers, New York
  11. Drott, E. E. and R. A. Mendelson, 1970a, Determination of Polymer Branching with Gel-Permeation Chromatography .1. Theory, J. of Polymer Science Part a-2-Polymer Physics, 8, 1361-& https://doi.org/10.1002/pol.1970.160080808
  12. Drott, E. E. and R. A. Mendelson, 1970b, Determination of Polymer Branching with Gel-Permeation Chromatography .2. Experimental Results for Polyethylene, J. of Polymer Science Part a-2-Polymer Physics, 8, 1373-& https://doi.org/10.1002/pol.1970.160080809
  13. Ferry, J., 1980, Viscoelastic properties of polymers, Wiley
  14. Fetters, L. J., A. D. Kiss, D. S. Pearson, G. F. Quack and F. J. Vitus, 1993, Rheological Behavior of Star-Shaped Polymers, Macromolecules, 26, 647-654 https://doi.org/10.1021/ma00056a015
  15. Garcia-Franco, C. A., S. Srinivas, D. J. Lohse and P. Brant, 2001, Similarities between gelation and long chain branching viscoelastic behavior, Macromolecules, 34, 3115-3117 https://doi.org/10.1021/ma0021794
  16. Ginzburg, V. V., F. Qiu and A. C. Balazs, 2002, Three-dimensional simulations of diblock copolymer/particle composites, Polymer, 43, 461-466 https://doi.org/10.1016/S0032-3861(01)00428-1
  17. Graessley, W. W. and V. R. Raju, 1984, Some Rheological Properties of Solutions and Blends of Hydrogenated Polybutadiene, J. of Polymer Science-Polymer Symposia, 77-93
  18. Gurtovenko, A. A. and Y. Y. Gotlib, 1998, Intra- and interchain relaxation processes in meshlike polymer networks, Macromolecules, 31, 5756-5770 https://doi.org/10.1021/ma980030a
  19. Gurtovenko, A. A. and Y. Y. Gotlib, 2000, Viscoelastic dynamic properties of meshlike polymer networks: Contributions of intra- and interchain relaxation processes, Macromolecules, 33, 6578-6587 https://doi.org/10.1021/ma991685u
  20. Gurtovenko, A. A., Y. Y. Gotlib and H. G. Kilian, 2000, Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure, Macromolecular Theory and Simulations, 9, 388-397 https://doi.org/10.1002/1521-3919(20000801)9:7<388::AID-MATS388>3.0.CO;2-G
  21. Hatzikiriakos, S. G., M. Kapnistos, D. Vlassopoulos, C. Chevillard, H. H. Winter and J. Roovers, 2000, Relaxation time spectra of star polymers, Rheologica Acta, 39, 38-43 https://doi.org/10.1007/s003970050005
  22. Lee, J. Y., R. B. Thompson, D. Jasnow and A. C. Balazs, 2002, Effect of nanoscopic particles on the mesophase structure of diblock copolymers, Macromolecules, 35, 4855-4858 https://doi.org/10.1021/ma0200266
  23. Lim, S. K., J. W. Kim, I. Chin, Y. K. Kwon and H. J. Choi, 2002, Preparation and interaction characteristics of organically modified montmorillonite nanocomposite with miscible polymer blend of poly(ethylene oxide) and poly(methyl methacrylate), Chemistry of Materials, 14, 1989-1994 https://doi.org/10.1021/cm010498j
  24. Majeste, J. C., J. P. Montfort, A. Allal and G. Marin, 1998, Viscoelasticity of low molecular weight polymers and the transition to the entangled regime, Rheologica Acta, 37, 486-499 https://doi.org/10.1007/s003970050135
  25. Martin, J. E., D. Adolf and J. P. Wilcoxon, 1988, Viscoelasticity of near-Critical Gels, Physical Review Letters, 61, 2620-2623 https://doi.org/10.1103/PhysRevLett.61.2620
  26. Martin, J. E., D. Adolf and J. P. Wilcoxon, 1989, Viscoelasticity near the Sol-Gel Transition, Physical Review A, 39, 1325-1332 https://doi.org/10.1103/PhysRevA.39.1325
  27. Matsuoka, S., 1992, Relaxation Phenomena in Polymers, Hansen, New York
  28. McLeish, T. C. B. and R. G. Larson, 1998, Molecular constitutive equations for a class of branched polymers: The pom-pom polymer, J. of Rheology, 42, 81-110 https://doi.org/10.1122/1.550933
  29. McLeish, T. C. B. and S. T. Milner, 1999, Entangled dynamics and melt flow of branched polymers. Branched Polymers Ii. 143: 195-256 https://doi.org/10.1007/3-540-49780-3_4
  30. Pakula, T., S. Geyler, T. Edling and D. Boese, 1996, Relaxation and viscoelastic properties of complex polymer systems, Rheologica Acta, 35, 631-644 https://doi.org/10.1007/BF00396512
  31. Pattamaprom, C., R. G. Larson and T. J. Van Dyke, 2000, Quantitative predictions of linear viscoelastic rheological properties of entangled polymers, Rheologica Acta, 39, 517-531 https://doi.org/10.1007/s003970000104
  32. Porter, D., 1987, Viscosity as a Consequence of Dielectric Dissipation.1. General Equation and Applications, Polymer, 28, 1051-1055 https://doi.org/10.1016/0032-3861(87)90241-2
  33. Porter, D., 1995, Group interaction modelling of polymer properties, Marcel Dekker, New York
  34. Raju, V. R., G. G. Smith, G. Marin, J. R. Knox and W. W. Graessley, 1979, Properties of Amorphous and Crystallizable Hydrocarbon Polymers .1. Melt Rheology of Fractions of Linear Polyethylene, J. of Polymer Science Part B-Polymer Physics, 17, 1183-1195 https://doi.org/10.1002/pol.1979.180170704
  35. Robertson, C. G., C. M. Roland, C. Paulo and J. E. Puskas, 2001, Linear viscoelastic properties of hyperbranched polyisobutylene, J. of Rheology, 45, 759-772 https://doi.org/10.1122/1.1357821
  36. Sammler, R. L. and J. L. Schrag, 1988a, Bead Spring Model Predictions of Solution Dynamics for Flexible Homopolymers Incorporating Long-Chain Branches and or Rings, Macromolecules, 21, 1132-1140 https://doi.org/10.1021/ma00182a047
  37. Sammler, R. L. and J. L. Schrag, 1988b, Predictions of the Ability of Solution Dynamics Experiments to Characterize Long-Chain Structure in Flexible Homopolymers, Macromolecules, 21, 3273-3285 https://doi.org/10.1021/ma00189a024
  38. Schausberger, A., G. Schindlauer and H. Janeschitzkriegl, 1985, Linear elastico-viscous properties of molten standard polystyrenes. 1. Presentation of complex moduli - role of shortrange structural parameters, Rheologica Acta, 24, 220-227 https://doi.org/10.1007/BF01332600
  39. Tackx, P. and J. Tacx, 1998, Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS), Polymer, 39, 3109-3113 https://doi.org/10.1016/S0032-3861(97)10098-2
  40. Vaia, R. A. and E. P. Giannelis, 1997, Lattice model of polymer melt intercalation in organically-modified layered silicates, Macromolecules, 30, 7990-7999 https://doi.org/10.1021/ma9514333
  41. van Krevelen, D. W., 1993, Properties of Polymers, Elseview, Amsterdam
  42. Wasserman, S. H. and W. W. Graessley, 1992, Effects of polydispersity on linear viscoelasticity in entangled polymer melts, J. of Rheology, 36, 543-572 https://doi.org/10.1122/1.550363
  43. Winter, H. H. and F. Chambon, 1986, Analysis of Linear Viscoelasticity of a Cross-Linking Polymer at the Gel Point, J. of Rheology, 30, 367-382 https://doi.org/10.1122/1.549853
  44. Wood-Adams, P. M., J. M. Dealy, A. W. deGroot and O. D. Redwine, 2000, Effect of molecular structure on the linear viscoelastic behavior of polyethylene, Macromolecules, 33, 7489-7499 https://doi.org/10.1021/ma991533z