DOI QR코드

DOI QR Code

유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구

Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow

  • 윤익로 (홍익대학교 기계시스템디자인공학과) ;
  • 신승원 (홍익대학교 기계시스템디자인공학과)
  • 발행 : 2009.07.01

초록

Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

키워드

참고문헌

  1. Glicksman, M. E. and Huang, S. C., 1982, 'Convective Heat Transfer During Dendritic Growth, in Convective Transport and Instability Phenomena, edited by J. Zierep and H. Ortel, Jr. (Braun, Karlsruhe),' p. 557
  2. Tonhardt, R. and Amberg, G., 1998, 'Phase-Field Simulaiton of Dendritica Growth in an Shear Flow,' J. Crystal Growth, Vol. 194, p. 406 https://doi.org/10.1016/S0022-0248(98)00687-3
  3. Beckerman, C., Diepers, H.-J., Steinbach, I. Karma, A. and Tong, X., 1999, 'Modeling Melt Convection in Phase-Field Simulations of Silidificaiton,' J. Comput. Phys, Vol. 154, p. 468 https://doi.org/10.1006/jcph.1999.6323
  4. Udaykumar, H. S., Mittal, R. and Shyy, W., 1999, 'Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids,' J. Comput. Phys, Vol. 153, pp. 535-574 https://doi.org/10.1006/jcph.1999.6294
  5. Al-Rawahi, N. and Tryggvason, G., 2002, 'Numerical Simulation of Dendritic Solidification with Convection: Two-Dimensional Flow,' J. Comput. Phys, Vol. 180, pp. 471-496 https://doi.org/10.1006/jcph.2002.7092
  6. Jeong, J.-H., Goldenfield, N. and Dantzig, J.A., 2001, 'Phase Field Model for Three-Dimensional Dendritic Growth with Fluid Flow,' Phys. Rev, Vol. 64, No. 4, 041602
  7. Jeong, J.-H., Dantzig, J.A. and Goldenfield, N., 2003, 'Dendritic Growth with Fluid Flow in Pure Materials,' Metall. Master. Trans, Vol. 34, No.3, pp. 459-466 https://doi.org/10.1007/s11661-003-0082-4
  8. Shin, S. and Juric, D., 2002, 'Modeling Three- Dimensinal Multiphase Flow Using a Lovel Contour Reconstruction Method for Front Tracking Without Connectivity,' J. Comput. Phys, Vol 180, pp 427-470 https://doi.org/10.1006/jcph.2002.7086
  9. Shin, S., Abdel-Khalik, S. I., Daru, V. and Juric, D., 2005, 'Accurate Representation of Surface Tension Using Level Contour Reconstruction Method,' J. Comput. Phys, Vol 203, pp 493-516 https://doi.org/10.1016/j.jcp.2004.09.003
  10. Karma, A. and Rappel, W.-J., 1996, 'Phase-Field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics,' phys. Rev, Vol.53, No.4, p. 3017 https://doi.org/10.1103/PhysRevE.53.R3017
  11. Chorin, J., 1968, 'Numerical Solution of the Navier-Stokes Equations,' Math. Comput, Vol 22, pp. 745-762 https://doi.org/10.2307/2004575
  12. Harlow, F. H. and Welch, J. E., 1965, 'Numerical Calculation of Time Dependent Viscous Incompressible Flow of Fluid with Free Surface.,' Physics of fluids, Vol. 8, pp.2182-2189 https://doi.org/10.1063/1.1761178
  13. Swarztrauber, P. N. and Sweet, R. A., 1979, 'Efficient Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations,' ACM Trans. Math. Software, Vol. 5, No. 3, pp. 352-364 https://doi.org/10.1145/355841.355850
  14. Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., 1999, 'A Non-Iscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method),' J. Comput. Phys, Vol. 152, p. 457 https://doi.org/10.1006/jcph.1999.6236
  15. Tryggvson, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. and Jan, Y., 2001, 'A Front Tracking Method for the Computations of Multiphase Flow,' J. Comput. Pys, Vol.169, pp. 708-759 https://doi.org/10.1006/jcph.2001.6726
  16. Carslaw, H. S. and Jaeger, C. J., 1959, Conduction of Heat in Solid, end ed., Clarendon, Oxford