DOI QR코드

DOI QR Code

공기주입 장치와 공기제거 장치를 사용한 표면 플라즈몬 공명 타원계측기

Surface Plasmon Resonance Ellipsometry Using an Air Injection System with an Extraction of Air System

  • 이홍원 (한남대학교 광.전자물리학과) ;
  • 조은경 (한남대학교 광.전자물리학과) ;
  • 조재흥 (한남대학교 광.전자물리학과) ;
  • 원종명 (안동대학교 물리학과) ;
  • 신기량 (안동대학교 물리학과) ;
  • 제갈원 (한국표준과학연구원 나노바이오융합연구단) ;
  • 조용재 (한국표준과학연구원 나노바이오융합연구단) ;
  • 조현모 (한국표준과학연구원 나노바이오융합연구단)
  • Lee, Hong-Won (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Cho, Eun-Kyoung (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Jo, Jae-Heung (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Won, Jong-Myoung (Dept. of Physics, Andong National University) ;
  • Shin, Gi-Ryang (Dept. of Physics, Andong National University) ;
  • CheGal, Won (Center for Nano-Bio Convergence Research, KRISS) ;
  • Cho, Yong-Jai (Center for Nano-Bio Convergence Research, KRISS) ;
  • Cho, Hyun-Mo (Center for Nano-Bio Convergence Research, KRISS)
  • 발행 : 2009.06.25

초록

완충용액과 분석시료의 확산으로 발생하는 측정 오차를 최소화하기 위하여 공기주입 장치와 공기제거 장치를 설치한 표면 플라즈 몬 공명 타원계측기(surface plasmon resonance ellipsometer: SPRE)를 새로이 제안하고 이를 제작하였다. SPRE에서 완충용액과 분석시료간의 상호 확산은 분석시료의 농도를 변화시켜 굴절률 측정에 영향을 주고, 이 결과 생체분자 물질의 접합 특성이 명확하게 나타나지 않는다. 이러한 SPRE의 측정 장치에 공기를 주입하는 장치를 추가로 설치하여 두 용액의 확산을 막고, 특히 불필요한 공기가 채널 내부로 유입되어 생기는 잡음신호를 없애기 위하여 공기제거 장치를 사용함으로써 신뢰성 있는 SPRE의 측정 결과를 얻을 수 있음을 확인하였다.

The surface plasmon resonance ellipsometer (SPRE), using a multiple air injection system with an extraction of air system, has been proposed and developed to minimize measurement error of signals due to diffusion of reagent into running buffer. Since the diffusion of reagent into running buffer affects the refractive index of the running buffer by changing the concentration, characteristics of binding between various bio-molecules don't appear clearly in measurement results. The diffusion between running buffer and reagent can be blocked by using an air bubble injection system. An extraction of air system is used to remove the noise signal due to unnecessary air bubbles flowing in a channel. Reliability of measurement results has been improved by using the valve system.

키워드

참고문헌

  1. S. K. Sia and G. M. Whitesides, 'Microfluidic devices fabricated in poly(dimethylsilox-ane) for biological studies,' Electrophoresis, vol. 24, no. 21, pp. 3563-3576, 2003 https://doi.org/10.1002/elps.200305584
  2. 김진산, 성인하, 김대은, '유연하고 신속한 표면미세가공술을 이용한 Micro-fluidic Channel 제작,' 한국공작기계학회논문집, vol. 11, no. 4, pp. 97-101, 2002
  3. A. R. Wheeler, S. Chah, R. J. Whelan, and R. N. Zare, 'Poly(dimethylsiloxane) microfluidic flow cells for surface plasmon resonance spectroscopy,' Sensors and actuators. B Chemical, vol. 98, no. 2/3, pp. 208-214, 2004 https://doi.org/10.1016/j.snb.2003.06.004
  4. K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, 'Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,' Biosensors and Bioelectronics, vol. 23, no. 4, pp. 466-472, 2007 https://doi.org/10.1016/j.bios.2007.05.007
  5. 조철호, 조웅, 황승용, 안유민, '시료주입시 기포발생이 억제된 반응조 형태의 중합효소연쇄반응용 PDMS/유리 바이오칩,' 대한기계학회논문집, vol. 30, no. 10, pp. 1261-1268, 2006 https://doi.org/10.3795/KSME-A.2006.30.10.1261
  6. 강태범, 조아라, 이현경, 'PDMS-b-PMMA 공중합체막의 제조 및 투과특성,' Membrane Journal, vol. 18, no. 3, pp. 219-225, 2008
  7. I. S. Byun, J. R. Yang, and S. K. Park, 'Fabrication of a new micro bio chip and flow cell cytometry system using Bio-MEMS technology,' Microelectronics Journal, vol. 39, no. 5, pp. 717-722, 2008 https://doi.org/10.1016/j.mejo.2007.12.004
  8. R. D. Chien, 'Micromolding of biochip devices designed with microchannels,' Sensors and actuators, A Physical, vol. 128, no. 2, pp. 238-247, 2006 https://doi.org/10.1016/j.sna.2006.02.029
  9. Biacore AB, 'Valve integrally associated with microfluidic liquid transport assembly,' U. S. Patent 6988317, 2006
  10. J. Homola, S. S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors: review,' Sensors and actuators, vol. 54, no. 1/2, pp. 3-15, 1999 https://doi.org/10.1016/S0925-4005(98)00321-9
  11. X. D. Hoa, A. G. Kirk, and M. Tabrizian, 'Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,' Biosensors and Bioelectronics, vol. 23, no. 2, pp. 151-160, 2007 https://doi.org/10.1016/j.bios.2007.07.001
  12. P. Schuck, D. B. Millar, and A. A. Kortt, 'Determination of binding constants by equilibrium titration with circulating sample in a surface plasmon resonance biosensor,' Analytical Biochemistry, vol. 265, no. 1, pp. 79-91, 1998 https://doi.org/10.1006/abio.1998.2872
  13. D. R. Hall, J. R. Cann, and D. J. Winzor, 'Demonstration of an upper limit to the range of association rate constants amenable to study by biosensor technology based on surface plasmon resonance,' Analytical Biochemistry, vol. 235, no. 2, pp. 175-184, 1996 https://doi.org/10.1006/abio.1996.0109
  14. N. Ryo and K. Kotaro, 'Phase detection of surface plasmon resonance using rotating analyzer method,' Sensors and Actuators, vol. 107, no. 2, pp. 952-956, 2005 https://doi.org/10.1016/j.snb.2004.12.044
  15. S. J. Lee, J. C.-Y. Chan, K. J. Maung, E. Rezler, and N. Sundararajan, 'Characterization of laterally deformable elastomer membranes for microfluidics,' Journal of Micromechanics and Microengineering, vol. 17, no. 5, pp. 843-851, 2007 https://doi.org/10.1088/0960-1317/17/5/001
  16. C. H. Wang and G. B. Lee, 'Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection,' Biosensors and Bioelectronics, vol. 21, no. 3, pp. 419-425, 2005 https://doi.org/10.1016/j.bios.2004.11.004